
Extrae Documentation
Release 4.2.13

BSC Performance Tools

Mar 27, 2025





CONTENTS

1 Quick start guide 1
1.1 The instrumentation package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Quick running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Quick merging the intermediate traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Introduction 5
2.1 What is the Paraver tool? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Where can the Paraver tool be found? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Configuration, build and installation 7
3.1 Configuration of the instrumentation package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Examples of configuration on different machines . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Extrae XML configuration file 19
4.1 XML Section: Trace configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 XML Section: MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 XML Section: pthread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 XML Section: OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 XML Section: Callers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.6 XML Section: User functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.7 XML Section: Performance counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.8 XML Section: Storage management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.9 XML Section: Buffer management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.10 XML Section: Trace control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.11 XML Section: Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.12 XML Section: Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.13 XML Section: Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.14 XML Section: CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.15 XML Section: OpenACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.16 XML Section: OpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.17 XML Section: Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.18 XML Section: Dynamic memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.19 XML Section: Memory references through Intel PEBS sampling . . . . . . . . . . . . . . . . . . 29
4.20 XML Section: Executing CPU identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.21 XML Section: Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.22 Using environment variables within the XML file . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Extrae API 31
5.1 Basic API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Extended API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Java bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Command-line version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

i



6 Merging process 39
6.1 Paraver Merger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Dimemas merger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Environment variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Extrae On-line User Guide 45
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2 Automatic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3 Structure detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.4 Periodicity detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.5 Multi-experiment analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.6 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8 Examples 49
8.1 DynInst based examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.2 LD_PRELOAD based examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.3 Statically linked based examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.4 Generating the final tracefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9 An example of Extrae XML configuration file 55

10 Environment variables 57

11 Running Extrae on top of PnMPI 61
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
11.2 Instructions to run with PnMPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

12 Regression tests 63

13 Overhead 65

14 Frequently Asked Questions 67
14.1 Configure, compile and link FAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
14.2 Execution FAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
14.3 Performance monitoring counters FAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
14.4 Merging traces FAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

15 Submitting a bug report 75
15.1 Reporting a compilation issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
15.2 Reporting an execution issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

16 Instrumented routines 77
16.1 MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
16.2 OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
16.3 pthread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
16.4 CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
16.5 OpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

17 SEE ALSO 87

Index 89

ii



CHAPTER

ONE

QUICK START GUIDE

1.1 The instrumentation package

1.1.1 Uncompressing the package

Extrae is a dynamic instrumentation package to trace programs compiled and run with the shared memory model
(like OpenMP and pthreads), the message passing (MPI) programming model or both programming models (dif-
ferent MPI processes using OpenMP or pthrads within each MPI process). Extrae generates trace files that can
be later visualized with Paraver.

The package is distributed in compressed tar format (e.g., extrae.tar.gz). To unpack it, execute from the desired
target directory the following command:

gunzip -c extrae.tar.gz | tar -xvf -

The unpacking process will create different directories on the current directory (see Table 1.1).

Table 1.1: Package contents description
Directory Contents
bin Contains the binary files of the Extrae tool.
etc Contains some scripts to set up environment variables and the Extrae

internal files.
lib Contains the Extrae tool libraries.
share/man Contains the Extrae manual entries.
share/doc Contains the Extrae manuals (pdf, ps and html versions).
share/example Contains examples to illustrate the Extrae instrumentation.

1.2 Quick running

Note: There are several included examples in the installation package. These examples are
installed in $EXTRAE_HOME/share/example and cover different application types (including se-
rial/MPI/OpenMP/CUDA/etc.). We suggest the user to look at them to get an idea on how to instrument their
application.

Once the package has been unpacked, set the EXTRAE_HOME environment variable to the directory where the
package was installed. Use the export or setenv commands to set it up depending on the shell you use. If you
use sh-based shell (like sh, bash, ksh, zsh, . . . ), issue this command:

export EXTRAE_HOME=<DIR>

however, if you use csh-based shell (like csh, tcsh), execute the following command:

1



Extrae Documentation, Release 4.2.13

setenv EXTRAE_HOME <DIR>

where <DIR> refers where Extrae was installed.

Note: Henceforth, all references to the usage of the environment variables will be used following the sh format
unless specified.

Extrae is offered in two different flavors: as a DynInst-based application, or stand-alone application. DynInst is
a dynamic instrumentation library that allows the injection of code in a running application without the need to
recompile the target application. If the DynInst instrumentation library is not installed, Extrae also offers different
mechanisms to trace applications.

1.2.1 Quick running Extrae - based on DynInst

Extrae needs some environment variables to be setup on each session. Issuing the command:

source ${EXTRAE_HOME}/etc/extrae.sh

on a sh-based shell, or

source ${EXTRAE_HOME}/etc/extrae.csh

on a csh-based shell will do the work. Then copy the default XML configuration file1 into the working directory
by executing:

cp ${EXTRAE_HOME}/share/example/MPI/extrae.xml .

If needed, set the application environment variables as usual (like OMP_NUM_THREADS, for example), and finally
launch the application using the ${EXTRAE_HOME}/bin/extrae instrumenter like:

${EXTRAE_HOME}/bin/extrae -config extrae.xml <PROGRAM>

where <PROGRAM> is the application binary.

1.2.2 Quick running Extrae - NOT based on DynInst

Extrae needs some environment variables to be setup on each session. Issuing the command:

source ${EXTRAE_HOME}/etc/extrae.sh

on a sh-based shell, or:

source ${EXTRAE_HOME}/etc/extrae.csh

on a csh-based shell will do the work. Then copy the default XML configuration file1 into the working directory
by executing:

cp ${EXTRAE_HOME}/share/example/MPI/extrae.xml .

and export EXTRAE_CONFIG_FILE as:

export EXTRAE_CONFIG_FILE=extrae.xml

If needed, set the application environment variables as usual (like OMP_NUM_THREADS, for example). Just before
executing the target application, issue the following command:

1 See section Extrae XML configuration file for further details regarding this file.

2 Chapter 1. Quick start guide



Extrae Documentation, Release 4.2.13

export LD_PRELOAD=${EXTRAE_HOME}/lib/<LIB>

where <LIB> is one of the libraries listed under ${EXTRAE_HOME}/lib Table 1.2.

Table 1.2: Some of the available libraries in Extrae. Their availability
depends upon the configure process.

Library Application type
Serial MPI OpenMP pthread SMPss nanos/OMPss CUDA OpenCL Java

libseqtrace Yes
libmpitrace2 Yes
libomptrace Yes
libpttrace Yes
libsmpsstrace Yes
libnanostrace Yes
libcudatrace Yes
libocltrace Yes
javaseqtrace.jar Yes
libompitrace2 Yes Yes
libptmpitrace2 Yes Yes
libsmpssmpitrace2 Yes Yes
libnanosmpitrace2 Yes Yes
libcudampitrace2 Yes Yes
libcudaompitrace2 Yes Yes Yes
liboclmpitrace2 Yes Yes

1.3 Quick merging the intermediate traces

Once the intermediate trace files (*.mpit files) have been created, they have to be merged (using the mpi2prv
command) in order to generate the final Paraver trace file. Execute the following command to proceed with the
merge:

${EXTRAE_HOME}/bin/mpi2prv -f TRACE.mpits -o output.prv

The result of the merge process is a Paraver tracefile called output.prv. If the -o option is not given, the
resulting tracefile is called EXTRAE_Paraver_Trace.prv.

2 If the application is Fortran append an f to the library. For example, if you want to instrument a Fortran application that is using MPI, use
libmpitracef instead of libmpitrace.

1.3. Quick merging the intermediate traces 3



Extrae Documentation, Release 4.2.13

4 Chapter 1. Quick start guide



CHAPTER

TWO

INTRODUCTION

Extrae is a dynamic instrumentation package to trace programs compiled and run with the shared memory model
(like OpenMP and pthreads), the message passing (MPI) programming model or both programming models (dif-
ferent MPI processes using OpenMP or pthreads within each MPI process). Extrae generates trace files that can
be visualized with Paraver.

Extrae is currently available on different platforms and operating systems: IBM PowerPC running Linux or AIX,
and x86 and x86-64 running Linux. It also has been ported to OpenSolaris and FreeBSD.

The combined use of Extrae and Paraver offers an enormous analysis potential, both qualitative and quantitative.
With these tools the actual performance bottlenecks of parallel applications can be identified. The microscopic
view of the program behavior that the tools provide is very useful to optimize the parallel program performance.

This document tries to give the basic knowledge to use the Extrae tool. Chapter Configuration, build and instal-
lation explains how the package can be configured and installed. Chapter Examples explains how to monitor an
application to obtain its trace file. At the end of this document there are appendices that include: Frequently Asked
Questions and a list of Instrumented routines in the package.

2.1 What is the Paraver tool?

Paraver is a flexible parallel program visualization and analysis tool based on an easy-to-use wxWidgets GUI.
Paraver was developed responding to the need of having a qualitative global perception of the application behavior
by visual inspection and then to be able to focus on the detailed quantitative analysis of the problems. Paraver
provides a large amount of information useful to decide the points on which to invest the programming effort to
optimize an application.

Expressive power, flexibility and the capability of efficiently handling large traces are key features addressed in
the design of Paraver. The clear and modular structure of Paraver plays a significant role towers achieving these
targets.

Some Paraver features are the support for:

• Detailed quantitative analysis of program performance,

• concurrent comparative analysis of several traces,

• fast analysis of very large traces,

• support for mixed message passing and shared memory (network of SMPs), and,

• customizable semantics of the visualized information.

One of the main features of Paraver is the flexibility to represent traces coming from different environments.
Traces are composed of state records, events and communications with associated timestamps. These three el-
ements can be used to build traces that capture the behavior along time of very different kind of systems. The
Paraver distribution includes, either in its own distribution or as additional packages, the following instrumenta-
tion modules:

1. Sequential application tracing: it is included in the Paraver distribution. It can be used to trace the value of
certain variables, procedure invocations, . . . in a sequential program.

5



Extrae Documentation, Release 4.2.13

2. Parallel application tracing: a set of modules are optionally available to capture the activity of parallel
applications using shared-memory, message-passing paradigms, or a combination of them.

3. System activity tracing in a multiprogrammed environment: an application to trace processor allocations
and process migrations is optionally available in the Paraver distribution.

4. Hardware counters tracing: an application to trace the hardware counter values is optionally available in the
Paraver distribution.

2.2 Where can the Paraver tool be found?

The Paraver distribution can be found at https://tools.bsc.es/downloads

Paraver binaries are available for Linux/x86, Linux/x86-64 and Linux/ia64, Windows.

In the Documentation section of the aforementioned URL you can find the |PARAVER| *Reference Manual* and
|PARAVER| *Tutorial* in addition to the documentation for other instrumentation packages.

Extrae and Paraver tools e-mail support is tools@bsc.es.

6 Chapter 2. Introduction

https://tools.bsc.es/downloads
https://tools.bsc.es/sites/default/files/documentation/1364.pdf
https://tools.bsc.es/sites/default/files/documentation/1367.pdf
mailto:tools@bsc.es


CHAPTER

THREE

CONFIGURATION, BUILD AND INSTALLATION

3.1 Configuration of the instrumentation package

There are many options to be applied at configuration time for the instrumentation package. We point out here
some of the relevant options, sorted alphabetically. To get the whole list run configure --help. Options
can be enabled or disabled. To enable them use --enable-X or --with-X= (depending on which option is
available), to disable them use --disable-X or --without-X.

• --enable-instrument-dynamic-memory

Allows instrumentation of dynamic memory related calls (such as malloc, free, realloc).

• --enable-merge-in-trace

Embed the merging process in the tracing library so the final tracefile can be generated automatically from
the application run.

• --enable-parallel-merge

Build the parallel mergers (mpimpi2prv/mpimpi2dim) based on MPI.

• --enable-posix-clock

Use POSIX clock (clock_gettime call) instead of low level timing routines. Use this option if the
system where you install the instrumentation package modifies the frequency of its processors at runtime.

• --enable-single-mpi-lib

Produces a single instrumentation library for MPI that contains both Fortran and C wrappers. Applications
that call the MPI library from both C and Fortran languages need this flag to be enabled.

• --enable-sampling

Enable PAPI sampling support.

• --enable-pmapi

Enable PMAPI library to gather CPU performance counters. PMAPI is a base package installed in AIX
systems since version 5.2.

• --enable-openmp

Enable support for tracing OpenMP on IBM, GNU and Intel runtimes. The IBM runtime instrumentation is
only available for Linux/PowerPC systems.

• --enable-openmp-gnu

Enable support for tracing OpenMP on GNU runtime.

• --enable-openmp-intel

Enable support for tracing OpenMP on Intel runtime.

7



Extrae Documentation, Release 4.2.13

• --enable-openmp-ibm

Enable support for tracing OpenMP IBM runtime. The IBM runtime instrumentation is only available for
Linux/PowerPC systems.

• --enable-openmp-ompt

Enables support for tracing OpenMP runtimes through the OMPT specification.

Note: Enabling this option disables the regular instrumentation system available through
--enable-openmp-gnu, --enable-openmp-intel and --enable-openmp-gnu.

• --enable-smpss

Enable support for tracing SMP-superscalar.

• --enable-nanos

Enable support for tracing Nanos run-time.

• --enable-online

Enables the on-line analysis module.

• --enable-pthread

Enable support for tracing pthread library calls.

• --enable-xml

Enable support for XML configuration (not available on BG/L, BG/P and BG/Q systems).

• --enable-xmltest

Do not try to compile and run a test LIBXML program.

• --enable-doc

Generates this documentation.

• --prefix=<PATH>

Location where the installation will be placed. After issuing make install you will find under DIR
the entries lib/, include/, share and bin containing everything needed to run the instrumentation
package.

• --with-bfd=<PATH>

Specify where to find the Binary File Descriptor package. In conjunction with libiberty, it is used to translate
addresses into source code locations.

• --with-binary-type=<32|64|default>

Specifies the type of memory address model when compiling (32bit or 64bit).

• --with-boost=<PATH>

Specify the location of the BOOST package. This package is required when using the DynInst instrumen-
tation with versions newer than 7.0.1.

• --with-binutils=<PATH>

Specify the location for the binutils package. The binutils package is necessary to translate addresses into
source code references.

• --with-clustering=<PATH>

If the on-line analysis module is enabled (see --enable-online), specify where to find ClusteringSuite
libraries and includes. This package enables support for on-line clustering analysis.

8 Chapter 3. Configuration, build and installation



Extrae Documentation, Release 4.2.13

• --with-cuda=<PATH>

Enable support for tracing CUDA calls on nVidia hardware and needs to point to the CUDA SDK instal-
lation path. This instrumentation is only valid in binaries that use the shared version of the CUDA library.
Interposition has to be done through the LD_PRELOAD mechanism. It is superseded by --with-cupti
which also supports instrmentation for static binaries.

• --with-cupti=<PATH>

Specify the location of the CUPTI libraries. CUPTI is used to instrument CUDA calls, and supersedes the
--with-cuda, although it still requires it.

• --with-dyninst=<PATH>

Specify the installation location for the DynInst package. Extrae also requires the DWARF package
--with-dwarf when using DynInst. Also, newer versions of DynInst (versions after 7.0.1) require the
BOOST package --with-boost. This flag is mandatory. Requires a working installation of a C++
compiler.

• --with-fft=<PATH>

If the spectral analysis module is enabled (see --with-spectral), specify where to find FFT libraries
and includes. This library is a dependency of the Spectral libraries.

• --with-java-jdk=<PATH>

Specify the location of JAVA development kit (JDK). This is necessary to create the connectors between
Extrae and Java applications.

• --with-java-aspectj=<PATH>

Specify the location of the AspectJ infrastructure. AspectJ is used to give support to dynamically instru-
mented Java applications.

• --with-java-aspectj-weaver=<path/to/aspectjweaver.jar>

AspectJ includes the aspectweaver.jar file that is responsible for the execution of dynamically in-
strumented Java applications. If --with-java-aspectj cannot locate this file, use this option to tell
Extrae where to find it.

• --with-liberty=<PATH>

Specify where to find the libiberty package. In conjunction with Binary File Descriptor, it is used to translate
addresses into source code locations.

• --with-mpi=<PATH>

Specify the location of an MPI installation to be used for the instrumentation package. This flag is manda-
tory.

• --with-mpi-name-mangling=<0u|1u|2u|upcase|auto>

Choose the Fortran name decoration (0, 1 or 2 underscores) for MPI symbols, or auto to automatically detect
the name mangling.

• --with-synapse=<PATH>

If the on-line analysis module is enabled (see --enable-online), specify where to find Synapse li-
braries and includes. This library is a front-end of the MRNet library.

• --with-openacc=<PATH>

Specifies the location of OpenACC includes and libraries. It usually is the base installation folder of the
compiler with support to OpenACC. Enables host activity instrumentation, to capture device activity support
for CUDA must be also enabled.

• --with-opencl=<PATH>

Specify the location for the OpenCL package, including library and include directories.

3.1. Configuration of the instrumentation package 9



Extrae Documentation, Release 4.2.13

• --with-openshmem=<PATH>

Specify the location of the OpenSHMEM installation to be used for the instrumentation package.

• --with-papi=<PATH>

Specify where to find PAPI libraries and includes. PAPI is used to gather performance counters. This flag
is mandatory.

• --with-spectral=<PATH>

If the on-line analysis module is enabled (see --enable-online), specify where to find Spectral li-
braries and includes. This package enables support for on-line spectral analysis.

• --with-unwind=<PATH>

Specify where to find Unwind libraries and includes. This library is used to get callstack information on
several architectures (including IA64 and Intel x86-64). This flag is mandatory.

3.2 Build

To build the instrumentation package, just issue make after the configuration.

3.3 Check

The Extrae package contains some consistency checks. The aim of such checks is to determine whether a func-
tionality is operative in the target environment and/or check whether the development of Extrae has introduced
any misbehavior. To run the checks, just issue make check after the compilation. Please, notice that checks are
meant to be run in the machine that the configure script was run, thus the results of the checks on machines with
back-end nodes different to front-end nodes (like BG/* systems) are not representative at all.

3.4 Installation

To install the instrumentation package in the directory chosen at configure step (through --prefix option), issue
make install.

3.5 Examples of configuration on different machines

All commands given here are given as an example to configure and install the package, you may need to tune them
properly (i.e., choose the appropriate directories for packages and so). These examples assume that you are using
a sh/bash shell, you must adequate them if you use other shells (like csh/tcsh).

3.5.1 Cray XC 40 - Extrae 4.2.13

Before issuing the configure command, the following modules were loaded:

• PrgEnv-gnu/5.2.40

• cray-mpich/7.2.2

• cudatoolkit6.5/6.5.14-1.0502.9613.6.1

• libunwind/1.1-CrayGNU-5.2.4

Configuration command:

10 Chapter 3. Configuration, build and installation



Extrae Documentation, Release 4.2.13

./configure --prefix=${PREFIX}/extrae/4.2.13
--with-papi=/opt/cray/papi/5.4.1.1
--with-mpi=/opt/cray/mpt/7.2.2/gni/mpich2-gnu/48
--with-unwind=/apps/daint/5.2.UP02/easybuild/software/

↪→libunwind/1.1-CrayGNU-5.2.40
--with-cuda=/opt/nvidia/cudatoolkit6.5/6.5.14-1.0502.9613.6.1
--enable-sampling
--without-dyninst
--with-binary-type=64
CC=gcc CXX=g++ MPICC=cc

Build and installation commands:

make
make install

3.5.2 Bluegene (L and P variants)

Configuration command:

./configure --prefix=/homec/jzam11/jzam1128/aplic/extrae/4.2.13
--with-papi=/homec/jzam11/jzam1128/aplic/papi/4.1.2.1
--with-bfd=/bgsys/local/gcc/gnu-linux_4.3.2/powerpc-linux-gnu/

↪→powerpc-bgp-linux
--with-liberty=/bgsys/local/gcc/gnu-linux_4.3.2/powerpc-bgp-

↪→linux
--with-mpi=/bgsys/drivers/ppcfloor/comm
--without-unwind
--without-dyninst

Build and installation commands:

make
make install

3.5.3 BlueGene/Q

To enable parsing the XML configuration file, the libxml2 must be installed. As of the time of writing this user
guide, we have been only able to install the static version of the library in a BG/Q machine, so take this into
consideration if you install the libxml2 in the system. Similarly, the binutils package (responsible for translating
application addresses into source code locations) that is available in the system may not be properly installed
and we suggest installing the binutils from the source code using the BG/Q cross-compiler. Regarding the cross-
compilers, we have found that using the IBM XL compilers may require using the XL libraries when generating the
final application binary with Extrae, so we would suggest using the GNU cross-compilers (/bgsys/drivers/
ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-*).

If you want to add libxml2 and binutils support into Extrae, your configuration command may resemble to:

./configure --prefix=/homec/jzam11/jzam1128/aplic/juqueen/extrae/4.2.13
--with-mpi=/bgsys/drivers/ppcfloor/comm/gcc
--without-unwind
--without-dyninst
--disable-openmp
--disable-pthread
--with-libz=/bgsys/local/zlib/v1.2.5
--with-papi=/usr/local/UNITE/packages/papi/5.0.1
--with-xml-prefix=/homec/jzam11/jzam1128/aplic/juqueen/libxml2-

↪→gcc
--with-binutils=/homec/jzam11/jzam1128/aplic/juqueen/binutils-

↪→gcc

3.5. Examples of configuration on different machines 11



Extrae Documentation, Release 4.2.13

--enable-merge-in-trace

Otherwise, if you do not want to add support for the libxml2 library, your configuration may look like this:

./configure --prefix=/homec/jzam11/jzam1128/aplic/juqueen/extrae/4.2.13
--with-mpi=/bgsys/drivers/ppcfloor/comm/gcc
--without-unwind
--without-dyninst
--disable-openmp
--disable-pthread
--with-libz=/bgsys/local/zlib/v1.2.5
--with-papi=/usr/local/UNITE/packages/papi/5.0.1
--disable-xml

In any situation, the build and installation commands are:

make
make install

3.5.4 AIX

Some extensions of Extrae do not work properly (nanos, SMPss and OpenMP) on AIX. In addition, if using IBM
MPI (aka POE) the make will complain when generating the parallel merge if the main compiler is not xlc/xlC.
So, you can either change the compiler or disable the parallel merge at compile step. Also, command ar can
complain if 64bit binaries are generated. It’s a good idea to run make with OBJECT_MODE=64 set to avoid this.

Compiling the 32bit package using the IBM compilers

Configuration command:

CC=xlc
CXX=xlC
./configure --prefix=${PREFIX}/extrae/4.2.13

--disable-nanos
--disable-smpss
--disable-openmp
--with-binary-type=32
--without-unwind
--enable-pmapi
--without-dyninst
--with-mpi=/usr/lpp/ppe.poe

Build and installation commands:

make
make install

Compiling the 64bit package without the parallel merge

Configuration command:

./configure --prefix=${PREFIX}/extrae/4.2.13
--disable-nanos
--disable-smpss
--disable-openmp
--disable-parallel-merge
--with-binary-type=64
--without-unwind
--enable-pmapi
--without-dyninst

12 Chapter 3. Configuration, build and installation



Extrae Documentation, Release 4.2.13

--with-mpi=/usr/lpp/ppe.poe

Build and installation commands:

OBJECT_MODE=64 make
make install

3.5.5 Linux

Compiling using default binary type using MPICH, OpenMP and PAPI

Configuration command:

./configure --prefix=${PREFIX}/extrae/4.2.13
--with-mpi=/home/harald/aplic/mpich/1.2.7
--with-papi=/usr/local/papi
--enable-openmp
--without-dyninst
--without-unwind

Build and installation commands:

make
make install

Compiling 32bit package in a 32/64bit mixed environment

Configuration command:

./configure --prefix=${PREFIX}/extrae/4.2.13
--with-mpi=/opt/osshpc/mpich-mx
--with-papi=/gpfs/apps/PAPI/3.6.2-970mp
--with-binary-type=32
--with-unwind=${HOME}/aplic/unwind/1.0.1/32
--with-elf=/usr
--with-dwarf=/usr
--with-dyninst=${HOME}/aplic/dyninst/7.0.1/32

Build and installation commands:

make
make install

Compiling 64bit package in a 32/64bit mixed environment

Configuration command:

./configure --prefix=${PREFIX}/extrae/4.2.13
--with-mpi=/opt/osshpc/mpich-mx
--with-papi=/gpfs/apps/PAPI/3.6.2-970mp
--with-binary-type=64
--with-unwind=${HOME}/aplic/unwind/1.0.1/64
--with-elf=/usr
--with-dwarf=/usr
--with-dyninst=${HOME}/aplic/dyninst/7.0.1/64

Build and installation commands:

make
make install

3.5. Examples of configuration on different machines 13



Extrae Documentation, Release 4.2.13

Compiling using default binary type, using OpenMPI, DynInst and libunwind

Configuration command:

./configure --prefix=${PREFIX}/extrae/4.2.13
--with-mpi=/home/harald/aplic/openmpi/1.3.1
--with-dyninst=/home/harald/dyninst/7.0.1
--with-dwarf=/usr
--with-elf=/usr
--with-unwind=/home/harald/aplic/unwind/1.0.1
--without-papi

Build and installation commands:

make
make install

Compiling on CRAY XT5 for 64bit package and adding sampling

Notice the --disable-xmltest. As backends programs cannot be run in the frontend, we skip running the
XML test. Also using a local installation of libunwind.

Configuration command:

CC=cc
CFLAGS='-O3 -g'
LDFLAGS='-O3 -g'
CXX=CC CXXFLAGS='-O3 -g'
./configure --prefix=${PREFIX}/extrae/4.2.13

--with-mpi=/opt/cray/mpt/4.0.0/xt/seastar/mpich2-gnu
--with-binary-type=64
--with-xml-prefix=/sw/xt5/libxml2/2.7.6/sles10.1_gnu4.1.2
--disable-xmltest
--with-bfd=/opt/cray/cce/7.1.5/cray-binutils
--with-liberty=/opt/cray/cce/7.1.5/cray-binutils
--enable-sampling
--enable-shared=no
--with-papi=/opt/xt-tools/papi/3.7.2/v23
--with-unwind=/ccs/home/user/lib
--without-dyninst

Build and installation commands:

make
make install

Compiling for the Intel MIC accelerator / Xeon Phi

The Intel MIC accelerators (also codenamed KnightsFerry - KNF and KnightsCorner - KNC) or Xeon Phi pro-
cessors are not binary compatible with the host (even if it is an Intel x86 or x86/64 chip), thus the Extrae package
must be compiled specially for the accelerator (twice if you want Extrae for the host). While the host configu-
ration and installation has been shown before, in order to compile Extrae for the accelerator you must configure
Extrae like:

Configuration command:

./configure --prefix=/home/Computational/harald/extrae-mic
--with-mpi=/opt/intel/impi/4.1.0.024/mic
--without-dyninst
--without-papi
--without-unwind

14 Chapter 3. Configuration, build and installation



Extrae Documentation, Release 4.2.13

--disable-xml
--disable-posix-clock
--with-libz=/opt/extrae/zlib-mic
--host=x86_64-suse-linux-gnu
--enable-mic
CFLAGS="-O -mmic -I/usr/include"
CC=icc
CXX=icpc
MPICC=/opt/intel/impi/4.1.0.024/mic/bin/mpiicc

To compile it, just issue:

make
make install

Compiling on a ARM based processor machine using Linux

If using the GNU toolchain to compile the library, we suggest at least using version 4.6.2 because of its enhaced
in this architecture.

Configuration command:

CC=/gpfs/APPS/BIN/GCC-4.6.2/bin/gcc-4.6.2
./configure --prefix=/gpfs/BSCTOOLS/extrae/4.2.13

--with-unwind=/gpfs/BSCTOOLS/libunwind/1.0.1-git
--with-papi=/gpfs/BSCTOOLS/papi/4.2.0
--with-mpi=/usr
--enable-posix-clock
--without-dyninst

Build and installation commands:

make
make install

Compiling in a Slurm/MOAB environment with support for MPICH2

Configuration command:

export MP_IMPL=anl2
./configure --prefix=${PREFIX}/extrae/4.2.13

--with-mpi=/gpfs/apps/MPICH2/mx/1.0.8p1..3/32
--with-papi=/gpfs/apps/PAPI/3.6.2-970mp
--with-binary-type=64
--without-dyninst
--without-unwind

Build and installation commands:

make
make install

Compiling in a environment with IBM compilers and POE

Configuration command:

CC=xlc
CXX=xlC
./configure --prefix=${PREFIX}/extrae/4.2.13

--with-mpi=/opt/ibmhpc/ppe.poe
--without-dyninst

3.5. Examples of configuration on different machines 15



Extrae Documentation, Release 4.2.13

--without-unwind
--without-papi

Build and installation commands:

make
make install

Compiling in a environment with GNU compilers and POE

Configuration command:

./configure --prefix=${PREFIX}/extrae/4.2.13
--with-mpi=/opt/ibmhpc/ppe.poe
--without-dyninst
--without--unwind
--without-papi

Build and installation commands:

MP_COMPILER=gcc make
make install

Compiling Extrae 4.2.13 in Hornet / Cray XC40 system

Configuration command, enabling MPI, PAPI and online analysis over MRNet.

./configure --prefix=/zhome/academic/HLRS/xhp/xhpgl/tools/extrae/4.2.13/
↪→intel

--with-mpi=/opt/cray/mpt/7.1.2/gni/mpich2-intel/140
--with-unwind=/zhome/academic/HLRS/xhp/xhpgl/tools/libunwind
--without-dyninst
--with-papi=/opt/cray/papi/5.3.2.1
--enable-online
--with-mrnet=/zhome/academic/HLRS/xhp/xhpgl/tools/mrnet/4.1.0
--with-spectral=/zhome/academic/HLRS/xhp/xhpgl/tools/spectral/

↪→3.1
--with-synapse=/zhome/academic/HLRS/xhp/xhpgl/tools/synapse/2.0

Build and installation commands:

make
make install

Compiling Extrae 4.2.13 in Shaheen II / Cray XC40 system

With the following modules loaded:

module swap PrgEnv-XXX/YYY PrgEnv-cray/5.2.40
module load cray-mpich

Configuration command, enabling MPI, PAPI:

./configure --prefix=${PREFIX}/extrae/4.2.13
--with-mpi=/opt/cray/mpt/7.1.1/gni/mpich2-cray/83
--with-binary-type=64
--with-unwind=/home/markomg/lib
--without-dyninst
--disable-xmltest
--with-bfd=/opt/cray/cce/default/cray-binutils
--with-liberty=/opt/cray/cce/default/cray-binutils

16 Chapter 3. Configuration, build and installation



Extrae Documentation, Release 4.2.13

--enable-sampling
--enable-shared=no
--with-papi=/opt/cray/papi/5.3.2.1

Build and installation commands:

make
make install

3.5.6 Knowing how a package was configured

If you are interested on knowing how an Extrae package was configured execute the following command after
setting EXTRAE_HOME to the base location of an installation.

${EXTRAE_HOME}/etc/configured.sh

this command will show the configure command itself and the location of some dependencies of the instrumenta-
tion package.

3.5. Examples of configuration on different machines 17



Extrae Documentation, Release 4.2.13

18 Chapter 3. Configuration, build and installation



CHAPTER

FOUR

EXTRAE XML CONFIGURATION FILE

Extrae is configured through a XML file that is set through the EXTRAE_CONFIG_FILE environment variable.
The included examples provide several XML files to serve as a basis for the end user. For instance, the MPI
examples provide four XML configuration files:

• extrae.xml Exemplifies all the options available to set up in the configuration file. We will discuss
below all the sections and options available. It is also available on this document on appendix An example
of Extrae XML configuration file.

• extrae_explained.xml The same as the above with some comments on each section.

• summarized_trace_basic.xml A small example for gathering information of MPI and OpenMP
information with some performace counters and calling information at each MPI call.

• detailed_trace_basic.xml A small example for gathering a summarized information of MPI and
OpenMP parallel paradigms.

• extrae_bursts_1ms.xml An XML configuration example to setup the bursts tracing mode. This
XML file will only capture the regions in between MPI calls that last more than the given threshold (1ms in
this example).

Please note that most of the nodes present in the XML file have an enabled attribute that allows turning on and
off some parts of the instrumentation mechanism. For example, <mpi enabled="yes"> means MPI instru-
mentation is enabled and process all the contained XML subnodes, if any; whether <mpi enabled="no">
means to skip gathering MPI information and do not process XML subnodes.

Each section points which environment variables could be used if the tracing package lacks XML support. See
appendix Environment variables for the entire list.

Sometimes the XML tags are used for time selection (duration, for instance). In such tags, the following postfixes
can be used: n or ns for nanoseconds, u or us for microseconds, m or ms for milliseconds, s for seconds, M for
minutes, H for hours and D for days.

4.1 XML Section: Trace configuration

The basic trace behavior is determined in the first part of the XML and contains all of the remaining options. It
looks like:

<?xml version='1.0'?>

<trace enabled="yes"
home="@sed_MYPREFIXDIR@"
initial-mode="detail"
type="paraver"

>

< ... other XML nodes ... >

</trace>

19



Extrae Documentation, Release 4.2.13

The <?xml version='1.0'?> is mandatory for all XML files. Don’t touch this. The available tunable
options are under the <trace> node:

• enabled Set to yes if you want to generate tracefiles.

• home Set to where the instrumentation package is installed. Usually it points to the same location that
EXTRAE_HOME environment variable.

• initial-mode Available options

– detail Provides detailed information of the tracing.

– bursts Provides summarized information of the tracing. This mode removes most of the infor-
mation present in the detailed traces (like OpenMP and MPI calls among others) and only produces
information for computation bursts.

• type Available options

– paraver The intermediate files are meant to generate Paraver tracefiles.

– dimemas The intermediate files are meant to generate Dimemas tracefiles.

See also:

EXTRAE_ON , EXTRAE_HOME, EXTRAE_INITIAL_MODE and EXTRAE_TRACE_TYPE environment vari-
ables in appendix Environment variables.

4.2 XML Section: MPI

The MPI configuration part is nested in the config file (see section XML Section: Trace configuration) and its
nodes are the following:

<mpi enabled="yes">
<counters enabled="yes" />
<comm-calls enabled="yes" />

</mpi>

MPI calls can gather performance information at the begin and end of MPI calls. To activate this behavior, just set
to yes the attribute of the nested <counters> node. When <comm-calls> is set to no, the calls to certain
MPI_Comm_* calls (_rank, _size) are excluded from instrumentation to reduce tracing overhead.

See also:

EXTRAE_DISABLE_MPI and EXTRAE_MPI_COUNTERS_ON environment variables in appendix Environment
variables.

4.3 XML Section: pthread

The pthread configuration part is nested in the config file (see section XML Section: Trace configuration) and its
nodes are the following:

<pthread enabled="yes">
<locks enabled="no" />
<counters enabled="yes" />

</pthread>

The tracing package allows to gather information of some pthread routines. In addition to that, the user can also
enable gathering information of locks and also gathering performance counters in all of these routines. This is
achieved by modifying the enabled attribute of the <locks> and <counters>, respectively.

See also:

20 Chapter 4. Extrae XML configuration file



Extrae Documentation, Release 4.2.13

EXTRAE_DISABLE_PTHREAD, EXTRAE_PTHREAD_LOCKS and :envvar:‘ EX-
TRAE_PTHREAD_COUNTERS_ON‘ environment variables in appendix cha:EnvVars.

4.4 XML Section: OpenMP

The OpenMP configuration part is nested in the config file (see section XML Section: Trace configuration) and its
nodes are the following:

<openmp enabled="yes" ompt="no">
<locks enabled="no" />
<task dependencies="yes" />
<taskloop enabled="yes" dependencies="yes"/>
<counters enabled="yes" />

</openmp>

The tracing package allows to gather information of some OpenMP runtimes and outlined routines. In addition to
that, the user can also enable gathering information of locks and also gathering performance counters in all of these
routines. This is achieved by modifying the enabled attribute of the <locks> and <counters>, respectively.

See also:

EXTRAE_DISABLE_OMP, EXTRAE_OMP_LOCKS and EXTRAE_OMP_COUNTERS_ON environment variables
in appendix Environment variables.

4.5 XML Section: Callers

<callers enabled="yes">
<mpi enabled="yes">1-3</mpi>
<sampling enabled="no">1-5</sampling>
<dynamic-memory enabled="no">1-5</dynamic-memory>

</callers>

Callers are the routine addresses present in the process stack at any given moment during the application run.
Callers can be used to link the tracefile with the source code of the application.

The instrumentation library can collect a partial view of those addresses during the instrumentation. Such collected
addresses are translated by the merging process if the correspondent parameter is given and the application has
been compiled and linked with debug information.

There are three points where the instrumentation can gather this information:

• Entry of MPI calls

• Sampling points (if sampling is available in the tracing package)

• Dynamic memory calls (malloc, free, realloc)

The user can choose which addresses to save in the trace (starting from 1, which is the closest point to the MPI
call or sampling point) specifying several stack levels by separating them by commas or using the hyphen symbol.

See also:

EXTRAE_MPI_CALLER environment variable in appendix Environment variables.

4.6 XML Section: User functions

4.4. XML Section: OpenMP 21



Extrae Documentation, Release 4.2.13

<user-functions enabled="no"
list="/home/bsc41/bsc41273/user-functions.dat"
exclude-automatic-functions="no">
<counters enabled="yes" />

</user-functions>

The file contains a list of functions to be instrumented by Extrae. There are different alternatives to instrument
application functions, and some alternatives provides additional flexibility, as a result, the format of the list varies
depending of the instrumentation mechanism used:

• DynInst Supports instrumentation of user functions, outer loops, loops and basic blocks. The given list
contains the desired function names to be instrumented. After each function name, optionally you can
define different basic blocks or loops inside the desired function always by providing different suffixes that
are provided after the + character. For instance:

– To instrument the entry and exit points of foo function just provide the function name (foo).

– To instrument the entry and exit points of foo function plus the entry and exit points of its outer loop,
suffix the function name with outerloops (i.e., foo+outerloops).

– To instrument the entry and exit points of foo function plus the entry and exit points of its N-th loop
function you have to suffix it as loop_N, for instance foo+loop_3.

– To instrument the entry and exit points of foo function plus the entry and exit points of its N-th basic
block inside the function you have to use the suffix bb_N, for instance foo+bb_5. In this case, it is
also possible to specifically ask for the entry or exit point of the basic block by additionally suffixing
_s or _e, respectively.

Additionally, these options can be added by using comas, as in: foo+outerloops,loop_3,bb_3_e,
bb_4_s,bb_5.

To discover the instrumentable loops and basic blocks of a certain function you can execute the command
${EXTRAE_HOME}/bin/extrae -config extrae.xml -decodeBB, where extrae.xml is
an Extrae configuration file that provides a list on the user functions attribute that you want to get the
information.

• GCC and ICC (through -finstrument-functions) GNU and Intel compilers provide a compile and
link flag named -finstrument-functions that instruments the routines of a source code file that
Extrae can use. To use this functionality a file containing the names of the functions to be instrumented has
to be provided. Compile the executable using the flag -rdynamic (or link it using -export-dynamic)
in order to make the functions visible. For instance, to instrument the functions foo, bar and baz the user
would create a file with:

foo
bar
baz

In specific cases (e.g., functions declared inside a Fortran CONTAINS construct) the user may also need
to provide the function address as given by the command nm. For instance, to instrument the routine
pi_kernel from the pi executable the user would run nm as follows:

$ nm -a pi | grep pi_kernel

00000000004005ed T pi_kernel

and then add <FUNCTION_NAME> # <HEX_ADDRESS> into the function list:

pi_kernel # 00000000004005ed

The exclude-automatic-functions attribute is used only by the DynInst instrumenter. By setting this
attribute to yes the instrumenter will avoid automatically instrumenting the routines that either call OpenMP
outlined routines (i.e., routines with OpenMP pragmas) or call CUDA kernels.

22 Chapter 4. Extrae XML configuration file



Extrae Documentation, Release 4.2.13

Finally, in order to gather performance counters in these functions and also in those instrumented using the
extrae_user_function API call, the node counters has to be enabled.

Warning: Note that you need to compile your application binary with debugging information (typically the
-g compiler flag) in order to translate the captured addresses into valuable information such as: function name,
file name and line number.

See also:

EXTRAE_FUNCTIONS environment variable in appendix Environment variables.

4.7 XML Section: Performance counters

The instrumentation library can be compiled with support for collecting performance metrics of different compo-
nents available on the system. These components include:

• Processor performance counters. Such access is granted by PAPI1 or PMAPI2.

• Network performance counters. (Only available in systems with Myrinet GM/MX networks).

• Operating system accounts.

Here is an example of the counters section in the XML configuration file:

<counters enabled="yes">
<cpu enabled="yes" starting-set-distribution="1">
<set enabled="yes" domain="all" changeat-time="5s">
PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_L1_DCM
<sampling enabled="yes" period="100000000">PAPI_TOT_CYC</sampling>

</set>
<set enabled="yes" domain="user" changeat-globalops="5">
PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_FP_INS

</set>
</cpu>
<network enabled="yes" />
<resource-usage enabled="yes" />

</counters>

See also:

EXTRAE_COUNTERS, EXTRAE_NETWORK_COUNTERS and EXTRAE_RUSAGE environment variables in ap-
pendix Environment variables.

4.7.1 Processor performance counters

Processor performance counters are configured in the <cpu> nodes. The user can configure many sets in the
<cpu> node using the <set> node, but just one set will be used at any given time in a specific task. The <cpu>
node supports the starting-set-distribution attribute with the following accepted values:

• number (in range 1..N, where N is the number of configured sets) All tasks will start using the set specified
by number.

• block Each task will start using the given sets distributed in blocks (i.e., if two sets are defined and there
are four running tasks: tasks 1 and 2 will use set 1, and tasks 3 and 4 will use set 2).

• cyclic Each task will start using the given sets distributed cyclically (i.e., if two sets are defined and there
are four running tasks: tasks 1 and 3 will use, and tasks 2 and 4 will use set 2).

1 More information available on their website http://icl.cs.utk.edu/papi. Extrae requires at least PAPI 3.x.
2 PMAPI is only available for AIX operating system, and it is on the base operating system since AIX5.3. Extrae requires at least AIX 5.3.

4.7. XML Section: Performance counters 23

http://icl.cs.utk.edu/papi


Extrae Documentation, Release 4.2.13

• thread-cyclic Sets will be distributed cyclically between tasks and threads in a task.

• random Each task will start using a random set, and also calls either to Extrae_next_hwc_set or
Extrae_previous_hwc_set will change to a random set.

Each set contains a list of performance counters to be gathered at different instrumentation points (see sections
XML Section: MPI, XML Section: OpenMP and XML Section: User functions). If the tracing library is com-
piled to support PAPI, performance counters must be given using the canonical name (like PAPI_TOT_CYC and
PAPI_L1_DCM), or the PAPI code in hexadecimal format (like 8000003b and 80000000, respectively)3 If the
tracing library is compiled to support PMAPI, only one group identifier can be given per set4 and can be either the
group name (like pm_basic and pm_hpmcount1) or the group number (like 6 and 22, respectively).

In the given example (which refers to PAPI support in the tracing library) two sets are defined. First set will
read PAPI_TOT_INS (total instructions), PAPI_TOT_CYC (total cycles) and PAPI_L1_DCM (1st level cache
misses). Second set is configured to obtain PAPI_TOT_INS (total instructions), PAPI_TOT_CYC (total cycles)
and PAPI_FP_INS (floating point instructions).

Additionally, if the underlying performance library supports sampling mechanisms, each set can be configured to
gather information (see section XML Section: Callers) each time the specified counter reaches a specific value.
The counter that is used for sampling must be present in the set. In the given example, the first set is enabled to
gather sampling information every 100M cycles.

Furthermore, performance counters can be configured to report accounting on different basis depending on the
domain attribute specified on each set. Available options are:

• kernel Only counts events ocurred when the application is running in kernel mode.

• user Only counts events ocurred when the application is running in user-space mode.

• all Counts events independently of the application running mode.

In the given example, first set is configured to count all the events ocurred, while the second one only counts those
events ocurred when the application is running in user-space mode.

Finally, the instrumentation can change the active set in a manual and an automatic fashion. To change the active
set manually see Extrae_previous_hwc_set and Extrae_next_hwc_set API calls in section Basic API. To change
automatically the active set two options are allowed: based on time and based on application code. The former
mechanism requires adding the attribute changeat-time and specify the minimum time to hold the set. The
latter requires adding the attribute changeat-globalops with a value. The tracing library will automatically
change the active set when the application has executed as many MPI global operations as selected in that attribute.
When In any case, if either attribute is set to zero, then the set will not me changed automatically.

4.7.2 Network performance counters

Network performance counters are only available on systems with Myrinet GM/MX networks and they are fixed
depending on the firmware used. Other systems, like BG/* may provide some network performance counters,
but they are accessed through the PAPI interface (see section XML Section: Performance counters and PAPI
documentation).

If <network> is enabled the network performance counters appear at the end of the application run, giving a
summary for the whole run.

4.7.3 Operating system accounting

Operating system accounting is obtained through the getrusage(2) system call when <resource-usage>
is enabled. As network performance counters, they appear at the end of the application run, giving a summary for
the whole run.

3 Some architectures do not allow grouping some performance counters in the same set.
4 Each group contains several performance counters.

24 Chapter 4. Extrae XML configuration file



Extrae Documentation, Release 4.2.13

4.8 XML Section: Storage management

The instrumentation package can be instructed on what/where/how produce the intermediate trace files. These are
the available options:

<storage enabled="no">
<trace-prefix enabled="yes">TRACE</trace-prefix>
<size enabled="no">5</size>
<temporal-directory enabled="yes">/scratch</temporal-directory>
<final-directory enabled="yes">/gpfs/scratch/bsc41/bsc41273</final-directory>

</storage>

Such options refer to:

• trace-prefix Sets the intermediate trace file prefix. Its default value is TRACE.

• size Let the user restrict the maximum size (in megabytes) of each resulting intermediate trace file5.

• temporal-directory Where the intermediate trace files will be stored during the execution of the
application. By default they are stored in the current directory. If the directory does not exist, the instru-
mentation will try to make it.

• final-directoryWhere the intermediate trace files will be stored once the execution has been finished.
By default they are stored in the current directory. If the directory does not exist, the instrumentation will
try to make it.

See also:

EXTRAE_PROGRAM_NAME, EXTRAE_FILE_SIZE, EXTRAE_DIR, EXTRAE_FINAL_DIR and
EXTRAE_GATHER_MPITS environment variables in appendix Environment variables.

4.9 XML Section: Buffer management

Modify the buffer management entry to tune the tracing buffer behavior.

<buffer enabled="yes">
<size enabled="yes">150000</size>
<circular enabled="no" />

</buffer>

By, default (even if the enabled attribute is no) the tracing buffer is set to 500k events. If <size> is enabled
the tracing buffer will be set to the number of events indicated by this node. If the circular option is enabled, the
buffer will be created as a circular buffer and the buffer will be dumped only once with the last events generated
by the tracing package.

See also:

EXTRAE_BUFFER_SIZE environment variable in appendix Environment variables.

4.10 XML Section: Trace control

<trace-control enabled="yes">
<file enabled="no" frequency="5M">/gpfs/scratch/bsc41/bsc41273/control</file>
<global-ops enabled="no">10</global-ops>
<remote-control enabled="yes">
<mrnet enabled="yes" target="150" analysis="spectral" start-after="30">
<clustering max_tasks="26" max_points="8000"/>

5 This check is done each time the buffer is flushed, so the resulting size of the intermediate trace file depends also on the number of
elements contained in the tracing buffer (see XML Section: Buffer management).

4.8. XML Section: Storage management 25



Extrae Documentation, Release 4.2.13

<spectral min_seen="1" max_periods="0" num_iters="3" signals="DurBurst,InMPI
↪→"/>

</mrnet>
</remote-control>

</trace-control>

This section groups together a set of options to limit/reduce the final trace size. There are three mechanisms which
are based on file existence, global operations executed and external remote control procedures.

Regarding the file, the application starts with the tracing disabled, and it is turned on when a control file is
created. Use the property frequency to choose at which frequency this check must be done. If not supplied, it
will be checked every 100 global operations on MPI_COMM_WORLD.

If the global-ops tag is enabled, the instrumentation package begins disabled and starts the tracing when
the given number of global operations on MPI_COMM_WORLD has been executed. The user can also specify
multiple intervals in the form start-stop separated by commas.

The remote-control tag section allows to configure some external mechanisms to automatically control the
tracing. Currently, there is only one option which is built on top of MRNet and it is based on clustering and
spectral analysis to generate a small yet representative trace.

These are the options in the mrnet tag:

• target the approximate requested size for the final trace (in Mb).

• analysis one between clustering and spectral.

• start-after number of seconds before the first analysis starts.

The clustering tag configures the clustering analysis parameters:

• max_tasks maximum number of tasks to get samples from.

• max_points maximum number of points to cluster.

The spectral tag section configures the spectral analysis parameters:

• min_seen minimum times a given type of period has to be seen to trace a sample.

• max_periods maximum number of representative periods to trace. 0 equals to unlimited.

• num_iters number of iterations to trace for every representative period found.

• signals performance signals used to analyze the application. If not specified, DurBurst is used by
default.

See also:

EXTRAE_CONTROL_FILE, EXTRAE_CONTROL_GLOPS, EXTRAE_CONTROL_TIME environment variables
in appendix Environment variables.

4.11 XML Section: Bursts

<burst enabled="no" threshold="500u" mpi-statistics="yes" omp-statistics="yes" omp-
↪→summarization="no" />

If the user enables this option, the instrumentation library will just emit information of computation bursts (i.e.,
not does not trace MPI calls, OpenMP runtime, and so on) when the current mode (through initial-mode in section
XML Section: Trace configuration) is set to bursts. The library will discard all those computation bursts that
last less than the selected threshold.

In addition to that, when the tracing library is running in burst mode, it computes some statistics of MPI activity.
Such statistics can be dumped in the tracefile by enabling mpi-statistics.

See also:

26 Chapter 4. Extrae XML configuration file



Extrae Documentation, Release 4.2.13

EXTRAE_INITIAL_MODE, EXTRAE_BURST_THRESHOLD and EXTRAE_MPI_STATISTICS environment
variables in appendix Environment variables.

4.12 XML Section: Others

<others enabled="yes">
<minimum-time enabled="no">10M</minimum-time>
<finalize-on-signal enabled="yes"
SIGUSR1="no" SIGUSR2="no" SIGINT="yes"
SIGQUIT="yes" SIGTERM="yes" SIGXCPU="yes"
SIGFPE="yes" SIGSEGV="yes" SIGABRT="yes"

/>
<flush-sampling-buffer-at-instrumentation-point enabled="yes" />

</others>

This section contains other configuration details that do not fit in the previous sections. At the moment, there are
three options to be configured.

• The minimum-time option indicates the instrumentation package the minimum instrumentation time. To
enable it, set enabled to yes and set the minimum time within the minimum-time tag.

• The option labeled as finalize-on-signal instructs the instrumentation package to listen for different
types of signals6 and dump and finalize the execution whenever they occur. If a signal occurs but it is not
configured, then the execution may finish without generating the trace-file. Caveat: Some MPI implemen-
tations use SIGUSR1 and/or SIGUSR2, so if you want to capture those signals check first that enabling
them do not alter with the application execution.

• The flush-sampling-buffer-at-instrumentation-point lets the user decide whether the
sampling buffer should be checked for flushing at instrumentation points. If this option is not enabled, then
the buffer will only be dumped once at the end of the application execution.

4.13 XML Section: Sampling

<sampling enabled="no" type="default" period="50m" variability="10m"/>

This section configures the time-based sampling capabilities. Every sample contains processor performance coun-
ters (if enabled in section Processor performance counters and either PAPI or PMAPI are referred at configure
time) and callstack information (if enabled in section XML Section: Callers and proper dependencies are set at
configure time).

This section contains two attributes besides enabled. These are:

• type determines which timer domain is used (see setitimer(2) or setitimer(3p) for further in-
formation on time domains). Available options are: real (which is also the default value, virtual
and prof (which use the SIGALRM, SIGVTALRM and SIGPROF respectively). The default timing ac-
cumulates real time, but only issues samples at master thread. To let all the threads to collect samples, the
type must be virtual or prof.

• period specifies the sampling periodicity. In the example above, samples are gathered every 50ms.

• variability specifies the variability to the sampling periodicity. Such variability is calculated through
the random() system call and then is added to the periodicity. In the given example, the variability is set
to 10ms, thus the final sampling period ranges from 45 to 55ms.

See also:

EXTRAE_SAMPLING_PERIOD, EXTRAE_SAMPLING_VARIABILITY , EXTRAE_SAMPLING_CLOCKTYPE
and EXTRAE_SAMPLING_CALLER environment variables in appendix Environment variables.

6 See man signal(2) and man signal(7) for more details.

4.12. XML Section: Others 27



Extrae Documentation, Release 4.2.13

4.14 XML Section: CUDA

<cuda enabled="yes" />

This section indicates whether the CUDA calls should be instrumented or not. If enabled is set to yes, CUDA
calls will be instrumented, otherwise they will not be instrumented.

4.15 XML Section: OpenACC

<openacc enabled="yes" />

This section indicates wheter OpenACC host activity should be instrumented. If enabled is set to yes, OpenACC
activity made by the host will be instrumented, otherwise it will be not. If the user wants to capture device activity,
they must also enable CUDA instrumentation.

4.16 XML Section: OpenCL

<opencl enabled="yes" />

This section indicates whether the OpenCL calls should be instrumented or not. If enabled is set to yes, Opencl
calls will be instrumented, otherwise they will not be instrumented.

4.17 XML Section: Input/Output

<input-output enabled="no" internals="no"/>

This section indicates whether I/O calls (read and write) are meant to be instrumented. If enabled is set to
yes, the aforementioned calls will be instrumented, otherwise they will not be instrumented. If internals is set
to yes, I/O calls that occur inside other traced calls will also be captured.

4.18 XML Section: Dynamic memory

<dynamic-memory enabled="no">
<alloc enabled="yes" threshold="32768" />
<free enabled="yes" />

</dynamic-memory>

This section indicates whether dynamic memory calls (malloc, free, realloc) are meant to be instrumented.
If enabled is set to yes, the aforementioned calls will be instrumented, otherwise they will not be instrumented.

This section allows deciding whether allocation and free-related memory calls shall be instrumented.

Additionally, the configuration can also indicate whether allocation calls should be instrumented if the requested
memory size surpasses a given threshold (32768 bytes, in the example).

28 Chapter 4. Extrae XML configuration file



Extrae Documentation, Release 4.2.13

4.19 XML Section: Memory references through Intel PEBS sam-
pling

<pebs-sampling enabled="yes">
<loads enabled="yes" frequency="100" minimum-latency="10" />
<stores enabled="no" frequency="50">
<offcore-l3-misses enabled="no" /> <!-- Read together with stores samples. -->

</stores>
<load-l3-misses enabled="no" frequency="25" />

</pebs-sampling>

This section tells Extrae to use the PEBS feature from recent Intel processors7 to sample memory references.
These memory references capture the linear address referenced, the component of the memory hierarchy that
solved the reference and the number of cycles to solve the reference.

In the example above, PEBS monitors one load instruction every 100 Hz that requires at least 10 cycles to be
solved. Alternatively, the setting ‘frequency’ can be replaced by ‘period’, then PEBS will monitor one load
instruction every given number of loads. Please note that the ‘period’ setting is not available for Skylake and
newer processors.

4.20 XML Section: Executing CPU identification

<cpu-events enabled="no" frequency="0" emit-always="no" poi="none|openmp" />

By default the core identifier where every thread is executing is emitted at initialization points. This section enables
extra measurements, configurable by time (‘frequency’) and points of interest (‘poi’). When ‘frequency’ is set, new
measurements are emitted at instrumentation points if enough time has passed since the previous measurement.
When ‘poi’ is set to ‘openmp’, new measurements are emitted at the entry and exit points of OpenMP outlined
functions, tasks, and work dispatches. This option may introduce high variable overhead, please use with caution.

4.21 XML Section: Merge

<merge enabled="yes"
synchronization="default"
binary="mpi_ping"
tree-fan-out="16"
max-memory="512"
joint-states="yes"
keep-mpits="yes"
translate-addresses="yes"
sort-addresses="yes"
translate-data-addresses="yes"
overwrite="yes"
stop-at-percentage="50"

>
mpi_ping.prv

</merge>

If this section is enabled and the instrumentation package is configured to support this, the merge process will be
automatically invoked after the application run. The merge process will use all the resources devoted to run the
application.

In the given example, the leaf of this node will be used as the tracefile name (mpi_ping.prv`). Current
available options for the merge process are given as attribute of the <merge> node and they are:

7 Check for availability on your system by looking for pebs in /proc/cpuinfo.

4.19. XML Section: Memory references through Intel PEBS sampling 29



Extrae Documentation, Release 4.2.13

• synchronization: which can be set to default, node, task, no. This determines how task clocks
will be synchronized (default is node).

• binary: points to the binary that is being executed. It will be used to translate gathered addresses (MPI
callers, sampling points and user functions) into source code references.

• tree-fan-out: only for MPI executions sets the tree-based topology to run the merger in a parallel
fashion.

• max-memory: limits the intermediate merging process to run up to the specified limit (in MBytes).

• joint-states: which can be set to yes, no. Determines if the resulting Paraver tracefile will split or
join equal consecutive states (default is ‘‘yes‘‘).

• keep-mpits: whether to keep the intermediate tracefiles after performing the merge.

• translate-addresses : whether to identify the calling site of instrumented calls and samples by the
specified levels of the callstack (enabled by default); or just by their instruction addresses.

• sort-addresses: whether to sort all addresses that refer to the source code (enabled by default).

• translate-data-addresses: whether to identify allocated objects by their full callpath (enabled by
default); or just by the tuple <library_base_address, symbol_offset_within_library>.

• overwrite: set to yes if the new tracefile can overwrite an existing tracefile with the same name. If set
to no, then the tracefile will be given a new name using a consecutive id.

• stop-at-percentage: stops the generation of the tracefile at a given percentage. Accepts integer
values from 1 to 99. All other values disable this option.

In Linux systems, the tracing package can take advantage of certain functionalities from the system and can guess
the binary name, and from it the tracefile name. In such systems, you can use the following reduced XML section
replacing the earlier section.

<merge enabled="yes"
synchronization="default"
tree-fan-out="16"
max-memory="512"
joint-states="yes"
keep-mpits="yes"
translate-addresses="yes"
sort-addresses="yes"
translate-data-addresses="yes"
overwrite="yes"
stop-at-percentage="50"

/>

See also:

For further references, see chapter Merging process.

4.22 Using environment variables within the XML file

XML tags and attributes can refer to environment variables that are defined in the environment during the applica-
tion run. If you want to refer to an environment variable within the XML file, just enclose the name of the variable
using the dollar symbol ($), for example: {$FOO$}.

Note that the user has to put an specific value or a reference to an environment variable which means that expanding
environment variables in text is not allowed as in a regular shell (i.e., the instrumentation package will not convert
the follwing text {bar$FOO$bar).

30 Chapter 4. Extrae XML configuration file



CHAPTER

FIVE

EXTRAE API

There are two levels of the API in the Extrae instrumentation package. Basic API refers to the basic functionality
provided and includes emitting events, source code tracking, changing instrumentation mode and so. Extended
API is an experimental addition to provide several of the basic API within single and powerful calls using specific
data structures.

5.1 Basic API

The following routines are defined in $EXTRAE_HOME/include/extrae.h These routines are intended to
be called by C/C++ programs. The instrumentation package also provides bindings for Fortran applications. The
Fortran API bindings have the same name as the C API but honoring the Fortran compiler function name man-
gling scheme. To use the API in Fortran applications use the module provided in $EXTRAE_HOME/include/
extrae_module.f90 by using the Fortran use clause. This module has to be compiled beforehand with the
same compiler as the program being instrumented, with the following command:

make -f ${EXTRAE_HOME}/include/Makefile.extrae_module

• void Extrae_get_version (unsigned *major, unsigned *minor, unsigned *revision)

Returns the version of the underlying Extrae package. Although an application may be compiled to a spe-
cific Extrae library, by using the appropriate shared library commands, the application may use a different
Extrae library.

• void Extrae_init (void)

Initializes the tracing library.

This routine is called automatically in different circumstances, which include:

– Call to MPI_Init when the appropriate instrumentation library is linked or preload with the application.

– Usage of the DynInst launcher.

– If either the libseqtrace.so, libomptrace.so or libpttrace.so are linked dynamically
or preloaded with the application.

No major problems should occur if the library is initialized twice, only a warning appears in the terminal
output noticing the intent of double initialization.

• extrae_init_type_t Extrae_is_initialized (void)

This routine tells whether the instrumentation has been initialized, and if so, also which mechanism was the
first to initialize it (regular API or MPI initialization).

• void Extrae_fini (void)

Finalizes the tracing library and dumps the intermediate tracing buffers onto disk.

• void Extrae_event (extrae_type_t type, extrae_value_t value)

Adds a single timestamped event into the tracefile.

31



Extrae Documentation, Release 4.2.13

Some common uses of events are:

– Identify loop iterations (or any code block):

Given a loop, the user can set a unique type for the loop and a value related to the iterator value of the
loop. For example:

for (i = 1; i <= MAX_ITERS; i++)
{
Extrae_event (1000, i);
[original loop code]
Extrae_event (1000, 0);

}

The last added call to Extrae_event marks the end of the loop setting the event value to 0, which
facilitates the analysis with Paraver.

– Identify user routines:

Choosing a constant type (6000019 in this example) and different values for different routines (set to
0 to mark a “leave” event).

void routine1 (void)
{

Extrae_event (6000019, 1);
[routine 1 code]
Extrae_event (6000019, 0);

}

void routine2 (void)
{

Extrae_event (6000019, 2);
[routine 2 code]
Extrae_event (6000019, 0);

}

– Identify any point in the application using a unique combination of type and value.

• void Extrae_nevent (unsigned count, extrae_type_t *types, extrae_value_t *values)

Allows the user to place count events with the same timestamp at the given position.

• void Extrae_counters (void)

Emits the value of the active hardware counters set. See chapter Extrae XML configuration file for further
information.

• void Extrae_eventandcounters (extrae_type_t event, extrae_value_t value)

This routine lets the user add an event and obtain the performance counters with one call and a single
timestamp.

• void Extrae_neventandcounters (unsigned count, extrae_type_t *types, extrae_value_t *values)

This routine lets the user add several events and obtain the performance counters with one call and a single
timestamp.

• void Extrae_define_event_type (extrae_type_t *type, char *description, unsigned *nvalues, extrae_value_t *values, char **description_values)

This routine adds to the Paraver Configuration File human readable information regarding type type
and its values values. If no values need to be decribed set nvalues to 0 and also set values and
description_values to NULL.

• void Extrae_shutdown (void)

Turns off the instrumentation.

32 Chapter 5. Extrae API



Extrae Documentation, Release 4.2.13

• void Extrae_restart (void)

Turns on the instrumentation.

• void Extrae_previous_hwc_set (void)

Makes the previous hardware counter set defined in the XML file to be the active set (see section XML
Section: MPI for further information).

• void Extrae_next_hwc_set (void)

Makes the following hardware counter set defined in the XML file to be the active set (see section XML
Section: MPI for further information).

• void Extrae_set_tracing_tasks (int from, int to)

Allows the user to choose from which tasks (not threads!) store information in the tracefile.

• void Extrae_set_options (int options)

Permits configuring several tracing options at runtime. The options parameter has to be a bitwise or
combination of the following options, depending on the user’s needs:

– EXTRAE_CALLER_OPTION

Dumps caller information at each entry or exit point of the MPI routines. Caller levels need to be
configured at XML (see chapter Extrae XML configuration file).

– EXTRAE_HWC_OPTION

Activates hardware counter gathering.

– EXTRAE_MPI_OPTION

Activates tracing of MPI calls.

– EXTRAE_MPI_HWC_OPTION

Activates hardware counter gathering in MPI routines.

– EXTRAE_OMP_OPTION

Activates tracing of OpenMP runtime or outlined routines.

– EXTRAE_OMP_HWC_OPTION

Activates hardware counter gathering in OpenMP runtime or outlined routines.

– EXTRAE_UF_HWC_OPTION

Activates hardware counter gathering in the user functions.

– EXTRAE_PTHREAD_OPTION

Activates pthreads instrumentation

– EXTRAE_PTHREAD_HWC_OPTION

Activates hardware counters gathering in pthread routines

– EXTRAE_SAMPLING_OPTION

Activates instrumentation using time-based sampling

• void Extrae_network_counters (void)

Emits the value of the network counters if the system has this capability. (Only available for systems with
Myrinet GM/MX networks).

• void Extrae_network_routes (int task)

Emits the network routes for an specific task. (Only available for systems with Myrinet GM/MX networks.

5.1. Basic API 33



Extrae Documentation, Release 4.2.13

• unsigned long long Extrae_user_function (unsigned enter)

Emits an event into the tracefile which references the source code (data includes: source line number, file
name and function name). If enter is 0 it marks an end (i.e., leaving the function), otherwise it marks the
beginning of the routine. The user must be careful to place the call of this routine in places where the code
is always executed, being careful not to place them inside if and return statements. The function returns
the address of the reference.

void routine1 (void)
{
Extrae_user_function (1);
[routine 1 code]
Extrae_user_function (0);

}

void routine2 (void)
{
Extrae_user_function (1);
[routine 2 code]
Extrae_user_function (0);

}

In order to gather performance counters during the execution of these calls, the user-functions tag
and its counters have to be both enabled int section XML Section: User functions.

Warning: Note that you need to compile your application binary with debugging information (typically
the -g compiler flag) in order to translate the captured addresses into valuable information such as
function name, file name and line number.

• unsigned long long Extrae_user_function_at_level (unsigned enter, unsigned lvl)
Same as Extrae_user_function but allows the specification of callstack levels to skip.

• void Extrae_flush (void)
Forces the calling thread to write the events stored in the tracing buffers to disk.

5.2 Extended API

Warning: This API is in experimental stage and it is only available in C. Use it at your own risk!

The extended API makes use of two special structures located in $PREFIX/include/extrae_types.h.
The structures are extrae_UserCommunication and extrae_CombinedEvents. The former is in-
tended to encode an event that will be converted into a Paraver communication when its partner equivalent event
has found. The latter is used to generate events containing multiple kinds of information at the same time.

struct extrae_UserCommunication
{

extrae_user_communication_types_t type;
extrae_comm_tag_t tag;
unsigned size; /* size_t? */
extrae_comm_partner_t partner;
extrae_comm_id_t id;

};

The structure extrae_UserCommunication contains the following fields:

• type Available options are:

– EXTRAE_USER_SEND, if this event represents a send point.

34 Chapter 5. Extrae API



Extrae Documentation, Release 4.2.13

– EXTRAE_USER_RECV, if this event represents a receive point.

• tag The tag information in the communication record.

• size The size information in the communication record.

• partner The partner of this communication (receive if this is a send or send if this is a receive). Partners
(ranging from 0 to N-1) are considered across tasks whereas all threads share a single communication queue.
Special value ‘-1’ means the partner is the same process (i.e. communication between threads).

• id An identifier that is used to match communications between partners.

struct extrae_CombinedEvents
{

/* These are used as boolean values */
int HardwareCounters;
int Callers;
int UserFunction;
/* These are intended for N events */
unsigned nEvents;
extrae_type_t *Types;
extrae_value_t *Values;
/* These are intended for user communication records */
unsigned nCommunications;
extrae_user_communication_t *Communications;

};

The structure extrae_CombinedEvents contains the following fields:

• HardwareCounters Set to non-zero if this event has to gather hardware performance counters.

• Callers Set to non-zero if this event has to emit callstack information.

• UserFunction Available options are:

– EXTRAE_USER_FUNCTION_NONE, if this event should not provide information about user routines.

– EXTRAE_USER_FUNCTION_ENTER, if this event represents the starting point of a user routine.

– EXTRAE_USER_FUNCTION_LEAVE, if this event represents the ending point of a user routine.

• nEvents Set the number of events given in the Types and Values fields.

• Types A pointer containing nEvents type that will be stored in the trace.

• Values A pointer containing nEvents values that will be stored in the trace.

• nCommunications Set the number of communications given in the Communications field.

• Communications A pointer to extrae_UserCommunication structures containing
nCommunications elements that represent the involved communications.

The extended API contains the following routines:

• void Extrae_init_UserCommunication (struct extrae_UserCommunication *)

Use this routine to initialize an extrae_UserCommunication structure.

• void Extrae_init_CombinedEvents (struct extrae_CombinedEvents *)

Use this routine to initialize an extrae_CombinedEvents structure.

• void Extrae_emit_CombinedEvents (struct extrae_CombinedEvents *)

Use this routine to emit to the tracefile the events set in the extrae_CombinedEvents given.

• void Extrae_resume_virtual_thread (unsigned vthread)

This routine changes the thread identifier so as to be vthread in the final tracefile. Improper use of this
routine may result in corrupt tracefiles.

5.2. Extended API 35



Extrae Documentation, Release 4.2.13

• void Extrae_suspend_virtual_thread (void)

This routine recovers the original thread identifier (given by routines like pthread_self or
omp_get_thread_num, for instance).

• void Extrae_register_codelocation_type (extrae_type_t t1, extrae_type_t t2, const char* s1, const char *s2)

Registers type t2 to reference user source code location by using its address. During the merge phase the
mpi2prv command will assign type t1 to the event type that references the user function and to the event
t2 to the event that references the file name and line location. The strings s1 and s2 refers, respectively,
to the description of t1 and t2

• void Extrae_register_function_address (void *ptr, const char *funcname, const char *modname, unsigned line)

By default, the mpi2prv process uses the binary debugging information to translate program
addresses into information that contains function name, the module name and line. The
Extrae_register_function_address allows providing such information by hand during the exe-
cution of the instrumented application. This function must provide the function name (funcname), module
name (modname) and line number for a given address.

• void Extrae_register_stacked_type (extrae_type_t type)

Registers which event types are required to be managed in a stack way whenever void
Extrae_resume_virtual_thread or void Extrae_suspend_virtual_thread are called.

• void Extrae_set_threadid_function (unsigned (*threadid_function)(void))

Defines the routine that will be used as a thread identifier inside the tracing facility.

• void Extrae_set_numthreads_function (unsigned (*numthreads_function)(void))

Defines the routine that will count all the executing threads inside the tracing facility.

• void Extrae_set_taskid_function (unsigned (*taskid_function)(void))

Defines the routine that will be used as a task identifier inside the tracing facility.

• void Extrae_set_numtasks_function (unsigned (*numtasks_function)(void))

Defines the routine that will count all the executing tasks inside the tracing facility.

• void Extrae_set_barrier_tasks_function (void (*barriertasks_function)(void))

Establishes the barrier routine among tasks. It is needed for synchronization purposes.

5.3 Java bindings

If Java is enabled at configure time, a basic instrumentation library for serial application based on JNI bindings to
Extrae will be installed. The current bindings are within the package es.bsc.cepbatools.extrae and the
following bindings are provided:

• void Init ();

Initializes the instrumentation package.

• void Fini ();

Finalizes the instrumentation package.

• void Event (int type, long value);

Emits one event into the trace-file with the given pair type-value.

• void Eventandcounters (int type, long value);

Emits one event into the trace-file with the given pair type-value as well as read the performance counters.

36 Chapter 5. Extrae API



Extrae Documentation, Release 4.2.13

• void nEvent (int types[], long values[]);

Emits a set of pair type-value at the same timestamp. Note that both arrays must be the same length to
proceed correctly, otherwise the call ignores the call.

• void nEventandcounters (int types[], long values[]);

Emits a set of pair type-value at the same timestamp as well as read the performance counters. Note that
both arrays must be the same length to proceed correctly, otherwise the call ignores the call.

• void defineEventType (int type, String description, long[] values, String[] descriptionValues);

Adds a description for a given event type (through type and description parameters). If the array
values is non-null, then the array descriptionValues should be the an array of the same length and
each entry should be a string describing each of the values given in values.

• void SetOptions (int options);

This API call changes the behavior of the instrumentation package but none of the options currently apply
to the Java instrumentation.

• void Shutdown();

Disables the instrumentation until the next call to Restart().

• void Restart();

Resumes the instrumentation from the previous Shutdown() call.

5.3.1 Advanced Java Bindings

Since Extrae does not have features to automatically discover the thread identifier of the threads that run within
the virtual machine, there are some calls that allows to do this manually.

These calls are, however, intended for expert users and should be avoided whenever possible because their behavior
may be highly modified, or even removed, in future releases.

• SetTaskID (int id);

Tells Extrae that this process should be considered as task with identifier id. Use this call before invoking
Init().

• SetNumTasks (int num);

Instructs Extrae to allocate the structures for num processes. Use this call before invoking Init().

• SetThreadID (int id);

Instructs Extrae that this thread should be considered as thread with identifier id.

• SetNumThreads (int num);

Tells Extrae that there are num threads active within this process. Use this call before invoking Init().

• Comm (boolean send, int tag, int size, int partner, long id);

Allows generating communications between two processes. The call emits one of the two-point communi-
cation part, so it is necessary to invoke it from both the sender and the receiver part. The send parameter
determines whether this call will act as send or receive message. The tag and size parameters are used
to match the communication and their parameters can be displayed in Extrae. The partner refers to the
communication partner and it is identified by its TaskID. The id is meant for matching purposes but cannot
be recovered during the analysis with Paraver.

5.4 Command-line version

Extrae incorporates a mechanism to generate trace-files from the command-line in a very naïve way in order to
instrument executions driven by shell-scripted applications.

5.4. Command-line version 37



Extrae Documentation, Release 4.2.13

The command-line binary is installed in ${EXTRAE_HOME}/bin/extrae-cmd and supports the following
commands:

• init <TASKID> <THREADS>

This command initializes the tracing on the node that executed the command. The initialization command
receives two parameters (TASKID, THREADS). The TASKID parameter gives an task identifier to the fol-
lowing forthcoming events. The THREADS parameter indicates how many threads should the task contain.

• emit <THREAD-SLOT> <TYPE> <VALUE>

This command emits an event with the pair TYPE, VALUE into the the thread THREAD at the timestamp
when the command is invoked.

• fini

This command finalizes the instrumentation using the command-line version. Note that this finalization
does not automatically call the merge process (mpi2prv).

Warning: To use these commands, do not export neither EXTRAE_ON nor EXTRAE_CONFIG_FILE,
otherwise the behavior of these commands is undefined.

The initialization can be executed only once per node, so if you want to represent multiple tasks you need different
tasks.

38 Chapter 5. Extrae API



CHAPTER

SIX

MERGING PROCESS

Once the application has finished, and if the automatic merge process is not setup, the merge must be executed
manually. Here we detail how to run the merge process manually.

The inserted probes in the instrumented binary are responsible for gathering performance metrics of each
task/thread and for each of them several files are created where the XML configuration file specified (see sec-
tion XML Section: Storage management). Such files are:

• As many .mpit files as tasks and threads were running the target application. Each file contains informa-
tion gathered by the specified task/thread in raw binary format.

• A single .mpits file that contain a list of related .mpit files.

• If the DynInst based instrumentation package was used, an addition .sym file that contains some symbolic
information gathered by the DynInst library.

In order to use Paraver, those intermediate files (i.e., .mpit files) must be merged and translated into Paraver
trace file format. The same applies if the user wants to use the Dimemas simulator. To proceed with any of
these translations, all the intermediate trace files must be merged into a single trace file using one of the available
mergers in the bin directory (see Table 6.1).

The target trace type is defined in the XML configuration file used at the instrumentation step (see section XML
Section: Trace configuration), and it has to match with the used merger (mpi2prv and mpimpi2prv for Para-
ver and mpi2dim and mpimpi2dim for Dimemas). However, it is possible to force the format nevertheless the
selection done in the XML file using the parameters -paraver or -dimemas1.

Table 6.1: Description of the available mergers in the Extrae package
mpi2prv Sequential version of the Paraver merger.
mpi2dim Sequential version of the Dimemas merger.
mpimpi2prv Parallel version of the Paraver merger.
mpimpi2dim Parallel version of the Dimemas merger.

6.1 Paraver Merger

As stated before, there are two Paraver mergers: mpi2prv and mpimpi2prv. The former is for use in a single
processor mode, while the latter is meant to be used with multiple processors using MPI (and cannot be run using
one MPI task).

Paraver merger receives a set of intermediate trace files and generates three files with the same name (which is
set with the -o option) but differ in the extension. The Paraver trace itself (.prv file) that contains timestamped
records that represent the information gathered during the execution of the instrumented application. It also
generates the Paraver Configuration File (.pcf file), which is responsible for translating values contained in the
Paraver trace into a more human readable values. Finally, it also generates a file containing the distribution of the
application across the cluster computation resources (.row file).

1 The timing mechanism differ in Paraver/Dimemas at the instrumentation level. If the output trace format does not correspond with that
selected in the XML some timing inaccuracies may be present in the final tracefile. Such inaccuracies are known to be higher due to clock
granularity if the XML is set to obtain Dimemas tracefiles but the resulting tracefile is forced to be in Paraver format.

39



Extrae Documentation, Release 4.2.13

6.1.1 Sequential Paraver Merger

These are the available options for the sequential Paraver merger:

-d, -dump
Dumps the information stored in the intermediate trace files.

-dump-without-time
The information dumped with -d or -dump does not show the timestamp.

-e <BINARY>
Uses the given <BINARY> to translate addresses that are stored in the intermediate trace files into useful
information (including function name, source file and line). The application has to be compiled with -g
flag so as to obtain valuable information.

Note: Since Extrae version 2.4.0 this flag is superseded in Linux systems where /proc/self/maps is
readable. The instrumentation part will annotate the binaries and shared libraries in use and will try to use
them before using <BINARY>. This flag is still available in Linux systems as a default case just in case the
binaries and libraries pointed by /proc/self/maps are not available.

-emit-library-events
Emit additional events for the source code references that belong to a separate shared library that cannot be
translated. Only add information with respect to the shared library name. This option is disabled by default.

-evtnum <N>
Partially processes (up to <N> events) the intermediate trace files to generate the Dimemas tracefile.

-f <FILE.mpits>
(where <FILE.mpits> file is generated by the instrumentation)

The merger uses the given file (which contains a list of intermediate trace files of a single executions) instead
of giving set of intermediate trace files.

This option looks first for each file listed in the parameter file. Each contained file is searched in the absolute
given path, if it does not exist, then it’s searched in the current directory.

-f-relative <FILE.mpits>
(where <FILE.mpits> file is generated by the instrumentation)

This options behaves like the -f options but looks for the intermediate files in the current directory.

-f-absolute <FILE.mpits>
(where <FILE.mpits> file is generated by the instrumentation)

This options behaves like the -f options but uses the full path of every intermediate file so as to locate
them.

-h
Provides minimal help about merger options.

-keep-mpits, -no-keep-mpits
Tells the merger to keep (or remove) the intermediate files after the trace generation.

-maxmem <M>
The last step of the merging process will be limited to use <M> megabytes of memory. By default, <M> is
512.

-s <FILE.sym>
(where <FILE.sym> file is generated with the Dyninst instrumentator)

Passes information regarding instrumented symbols into the merger to aid the Paraver analysis. If -f,
-f-relative or -f-absolute paramters are given, the merge process will try to automatically load
the symbol file associated to that <FILE.mpits> file.

40 Chapter 6. Merging process



Extrae Documentation, Release 4.2.13

-o <FILE.prv[.gz]>
Choose the name of the target Paraver tracefile, can be compressed with the libz library. If -o is not given,
the merging process will automatically name the tracefile using the application binary name, if possible.

-remove-files
The merging process removes the intermediate tracefiles when succesfully generating the Paraver tracefile.

-skip-sendrecv
Do not match point to point communications issued by MPI_Sendrecv or MPI_Sendrecv_replace.

-sort-addresses
Sort event values that reference source code locations so as the values are sorted by file name first and then
line number (enabled by default).

-split-states
Do not join consecutive states that are the same into a single one.

-stop-at-percentage
Stops the generation of the tracefile at a given percentage. Accepts integer values from 1 to 99. All other
values disable this option.

no-syn
If set, the merger will not attempt to synchronize the different tasks. This is useful when merging interme-
diate files obtained from a single node (and thus, share a single clock).

-syn-by-task
If different nodes are used in the execution of a tracing run, there can exist some clock differences on all the
nodes. This option makes mpi2prv to recalculate all the timings based on the end of the MPI_Init call.
This will usually lead to “synchronized” tasks, but it will depend on how the clocks advance in time.

-syn-by-node
If different nodes are used in the execution of a tracing run, there can exist some clock differences
on all the nodes. This option makes mpi2prv to recalculate all the timings based on the end of the
MPI_Init call and the node where they ran. This will usually lead to better synchronized tasks than
using -syn-by-task, but, again, it will depend on how the clocks advance in time.

-syn-apps
If synchronization is enabled, also align all applications at their synchronization points.

-trace-overwrite, -no-trace-overwrite
Tells the merger to overwrite (or not) the final tracefile if it already exists. If the tracefile exists and
-no-trace-overwrite is given, the tracefile name will have an increasing numbering in addition to
the name given by the user.

-translate-addresses, -no-translate-addresses
Identify the calling site of instrumented calls and samples by the specified levels of the callstack (enabled
by default); or just by their instruction addresses.

-translate-data-addresses, -no-translate-data-addresses
Identify allocated objects by their full callpath (enabled by default); or just by the tuple <li-
brary_base_address, symbol_offset_within_library>.

-unique-caller-id
Choose whether use a unique value identifier for different callers locations (MPI calling routines, user
routines, OpenMP outlined routines and pthread routines).

6.1.2 Parallel Paraver Merger

These options are specific to the parallel version of the Paraver merger:

-block
Intermediate trace files will be distributed in a block fashion instead of a cyclic fashion to the merger.

-cyclic
Intermediate trace files will be distributed in a cyclic fashion instead of a block fashion to the merger.

6.1. Paraver Merger 41



Extrae Documentation, Release 4.2.13

-size
The intermediate trace files will be sorted by size and then assigned to processors in a such manner that each
processor receives approximately the same size.

-consecutive-size
Intermediate trace files will be distributed consecutively to processors but trying to distribute the overall size
equally among processors.

-use-disk-for-comms
Use this option if your memory resources are limited. This option uses an alternative matching communi-
cation algorithm that saves memory but uses intensively the disk.

-tree-fan-out <N>
Use this option to instruct the merger to generate the tracefile using a tree-based topology. This should
improve the performance when using a large number of processes at the merge step. Depending on the
combination of processes and the width of the tree, the merger will need to run several stages to generate
the final tracefile.

The number of processes used in the merge process must be equal or greater than the <N> parameter. If it
is not, the merger itself will automatically set the width of the tree to the number of processes used.

6.2 Dimemas merger

As stated before, there are two Dimemas mergers: mpi2dim and mpimpi2dim. The former is for use in a
single processor mode while the latter is meant to be used with multiple processors using MPI.

In contrast with Paraver merger, Dimemas mergers generate a single output file with the .dim extension that is
suitable for the Dimemas simulator from the given intermediate trace files.

These are the available options for both Dimemas mergers:

-evtnum <N>
Partially processes (up to <N> events) the intermediate trace files to generate the Dimemas tracefile.

-f <FILE.mpits>
(where <FILE.mpits> file is generated by the instrumentation)

The merger uses the given file (which contains a list of intermediate trace files of a single executions) instead
of giving set of intermediate trace files.

This option takes only the file name of every intermediate file so as to locate them.

-f-relative <FILE.mpits>
(where <FILE.mpits> file is generated by the instrumentation)

This options works exactly as the -f option.

-f-absolute <FILE.mpits>
(where <FILE.mpits> file is generated by the instrumentation)

This options behaves like the -f option but uses the full path of every intermediate file so as to locate them.

-h
Provides minimal help about merger options.

-maxmem <M>
The last step of the merging process will be limited to use <M> megabytes of memory. By default, M is 512.

-o <FILE.dim>
Choose the name of the target Dimemas tracefile.

42 Chapter 6. Merging process



Extrae Documentation, Release 4.2.13

6.3 Environment variables

There are some environment variables that are related to the mergers:

6.3.1 Environment variables suitable to the Paraver merger

EXTRAE_LABELS

Lets the user add custom information to the generated Paraver Configuration File (.pcf). Just set this variable
to point to a file containing labels for the unknown (user) events.

The format for the file is:

EVENT_TYPE
0 [type1] [label1]
0 [type2] [label2]
...
0 [typeK] [labelK]

Where [typeN] is the event value and [labelN] is the description for the event with value [typeN].

It is also possible to link both type and value of an event:

EVENT_TYPE
0 [type] [label]
VALUES
[value1] [label1]
[value2] [label2]
...
[valueN] [labelN]

With this information, Paraver can deal with both type and value when giving textual information to the end user.
If Paraver does not find any information for an event/type it will shown it in numerical form.

MPI2PRV_TMP_DIR

Points to a directory where all intermediate temporary files will be stored.

These files will be removed as soon the application ends.

6.3.2 Environment variables suitable to the Dimemas merger

MPI2DIM_TMP_DIR

Points to a directory where all intermediate temporary files will be stored.

These files will be removed as soon the application ends.

6.3. Environment variables 43



Extrae Documentation, Release 4.2.13

44 Chapter 6. Merging process



CHAPTER

SEVEN

EXTRAE ON-LINE USER GUIDE

7.1 Introduction

Extrae On-line is a new module developed for the Extrae tracing toolkit, available from version 3.0, that incor-
porates intelligent monitoring, analysis and selection of the traced data. This tracing setup is tailored towards long
executions that are producing large traces. Applying automatic analysis techniques based on clustering, signal
processing and active monitoring, Extrae gains the ability to inspect and filter the data while it is being collected
to minimize the amount of data emitted into the trace, while maximizing the amount of relevant information
presented.

Extrae On-line has been developed on top of Synapse1, a framework that facilitates the deployment of applications
that follow the master/slave architecture based on the MRNet2 software overlay network. Thanks to its modular
design, new types of automatic analysis can be added very easily as new plug-ins into the on-line tracing system,
just by defining new Synapse protocols.

This document briefly describes the main features of the Extrae On-line module, and shows how it has to be
configured and the different options available.

7.2 Automatic analysis

Extrae On-line currently supports three types of automatic analysis:

1. fine-grain structure detection based on clustering techniques,

2. periodicity detection based on signal processing techniques,

3. and multi-experiment analysis based on active monitoring techniques.

Extrae On-line has to be configured to apply one of these types of analysis, and then the analysis will be performed
periodically as new data is being traced.

7.3 Structure detection

This mechanism aims at identifying the fine-grain structure of the computing regions of the program. Applying
density-based clustering, this method is able to expose the main performance trends in the computations, and this
information is useful to focus the analysis on the zones of real interest. To perform the cluster analysis, Extrae
On-line relies on the ClusteringSuite tool3.

At each phase of analysis, several outputs are produced:

• A scatter-plot representation that illustrates the behavior of the main computing regions of the program, that
enables a quick evaluation of potential imbalances.

1 https://github.com/gllort/synapse
2 http://www.paradyn.org/mrnet/
3 You can download it from https://tools.bsc.es/downloads.

45

https://github.com/gllort/synapse
http://www.paradyn.org/mrnet/
https://tools.bsc.es/downloads


Extrae Documentation, Release 4.2.13

• A summary of several performance metrics per cluster.

• On supported machines, a CPI stack model that attributes stall cycles to specific hardware components.

• And a trace that is augmented with the clusters information, that allows to identify patterns of performance
and variabilites.

Subsequent clustering results can be used to study the evolution of the application over time. In order to study
how the clusters are evolving, the xtrack tool4 can be used.

7.4 Periodicity detection

This mechanism allows to detect iterative patterns over a wide region of time, and precisely delimit where the
iterations start. Once a period has been found, those iterations presenting less perturbations are selected to produce
a representative trace, and the rest of the data is basically discarded. The result of applying this mechanism is a
compact trace where only the representative iterations are traced in full detail, and for the rest of the execution we
can optionally keep summarized information in the form of phase profiles or a “low resolution” trace.

Please note that applying this technique to a very short execution, or if no periodicity can be detected in the appli-
cation, may result in an empty trace depending on the configuration options selected (see section Configuration).

7.5 Multi-experiment analysis

This mechanism employs active measurement techniques in order to simulate different execution scenarios under
the same execution. Extrae On-line is able to add controlled interference into the program to simulate different
computation loads, network bandwidth, memory congestion and even tuning some configurations of the parallel
runtime (currently supports MPI Dynamic Load Balance (DLB) runtime). Then, the application behavior can
be studied under different circumstances, and tracking can be used to analyze the impact of these configurations
on the program performance. This technique aims at reducing the number of executions necessary to evaluate
different parameters and characteristics of your program.

7.6 Configuration

In order to activate the On-line tracing mode, the user has to enable the corresponding configuration section in the
Extrae XML configuration file. This section is found under trace-control > remote-control > online. The default
configuration is already ready to use:

<online enabled="yes"
analysis="clustering"
frequency="auto"
topology="auto">

The available options for the <online> section are the following:

• enabled Set to yes to activate the On-line tracing mode.

• analysis Choose from clustering, spectral and gremlins.

• frequency Set the time in seconds after which a new phase of analysis will be triggered, or auto to let
Extrae decide this automatically.

• topology Set the desired tree process tree topology, or auto to let Extrae decide this automatically.

Depending on the analysis selected, the following specific options become available.

4 You can download it from https://tools.bsc.es/downloads.

46 Chapter 7. Extrae On-line User Guide

https://tools.bsc.es/downloads


Extrae Documentation, Release 4.2.13

7.6.1 Clustering analysis options

<clustering config="cl.I.IPC.xml"/>

• config Specify the path to the ClusteringSuite XML configuration file.

7.6.2 Spectral analysis options

<spectral max_periods="0"
num_iters="3"
min_seen="0"
min_likeness="85">

<spectral_advanced enabled="no"
burst_threshold="80">

<periodic_zone detail_level="profile" />
<non_periodic_zone detail_level="bursts" min_duration="3s" />

</spectral_advanced>
</spectral>

The basic configuration options for the spectral analysis are the following:

• max_periods Set to the maximum number of periods to trace, or all to explore the whole run.

• num_iters Set to the number of iterations to trace per period.

• min_seen Minimum repetitions of a period before tracing it (0 to trace the first time that you encounter
it).

• min_likeness Minimum percentage of similarity to compare two equivalent periods.

Also, some advanced settings are tunable in the <spectral_advanced> section:

• enabled Set to yes to activate the spectral analysis advanced options.

• burst_threshold Filter threshold to keep all CPU bursts that add up to the given total time percentage.

• detail_level Specify the granularity of the data stored for the non-representative iterations of the
periodic region, and in the non-periodic regions. Choose from none (everything is discarded), profile (phase
profile at the start of each iteration/region) or bursts (trace in bursts mode).

• min_duration Minimum duration in seconds of the non-periodic regions for emitting any information
regarding that region into the trace.

7.6.3 Gremlins analysis options

<gremlins start="0"
increment="2"
roundtrip="no"
loop="no" />

• start Number of gremlins at the beginning of the execution.

• increment Number of extra gremlins at each analysis phase. Can also be a negative value to indicate that
you want to remove gremlins.

• roundtrip Set to yes if you want to start adding gremlins after you decrease to 0, or vice-versa, start
removing gremlins after you reach the maximum.

• loop Set to yes if you want to go back to the initial number of gremlins and repeat the sequence of
adding/removing gremlins after you have finished a complete sequence.

7.6. Configuration 47



Extrae Documentation, Release 4.2.13

48 Chapter 7. Extrae On-line User Guide



CHAPTER

EIGHT

EXAMPLES

Here we present three different examples of generating a Paraver tracefile. The first example requires the package
to be compiled with DynInst libraries. The second example uses the LD_PRELOAD or LDR_PRELOAD[64]
mechanism to interpose code in the application. Such mechanism is available in Linux and FreeBSD operating
systems and only works when the application uses dynamic libraries. Finally, there is an example using the static
library of the instrumentation package.

8.1 DynInst based examples

DynInst is a third-party instrumentation library developed at UW Madison which can instrument in-memory bi-
naries. It adds flexibility to add instrumentation to the application without modifying the source code. DynInst is
ported to different systems (Linux, FreeBSD) and to different architectures1 (x86, x86/64, PPC32, PPC64) but the
functionality is common to all of them.

8.1.1 Generating intermediate files for serial or OpenMP applications

Listing 8.1: run_dyninst.sh

1 #!/bin/sh
2

3 export EXTRAE_HOME=WRITE-HERE-THE-PACKAGE-LOCATION
4 export LD_LIBRARY_PATH=${EXTRAE_HOME}/lib
5 source ${EXTRAE_HOME}/etc/extrae.sh
6

7 ## Run the desired program
8 ${EXTRAE_HOME}/bin/extrae -config extrae.xml $*

A similar script can be found in ${EXTRAE_HOME}/share/example/SEQ just tune the EXTRAE_HOME
environment variable and make the script executable (using chmod u+x). You can either pass the XML config-
uration file through the EXTRAE_CONFIG_FILE instead, if you prefer. Line no. 5 is responsible for loading all
the environment variables needed for the DynInst launcher (called extrae) that is invoked in line 8.

In fact, there are two examples provided in ${EXTRAE_HOME}/share/example/SEQ, one for static (or
manual) instrumentation and another for the DynInst-based instrumentation. When using the DynInst instrumen-
tation, the user may add new routines to instrument using the existing function-list file that is already pointed by
the extrae.xml configuration file. The way to specify the routines to instrument is add as many lines with the name
of every routine to be instrumented.

Running OpenMP applications using DynInst is rather similar to serial codes. Just compile the application with
the appropriate OpenMP flags and run as before. You can find an example in ${EXTRAE_HOME}/share/
example/OMP.

1 The IA-64 architecture support was dropped in DynInst 7.0.

49



Extrae Documentation, Release 4.2.13

8.1.2 Generating intermediate files for MPI applications

MPI applications can also be instrumented using the DynInst instrumentator. The instrumentation is done inde-
pendently to each spawned MPI process, so in order to execute the DynInst-based instrumentation package on a
MPI application, you must be sure that your MPI launcher supports running shell-scripts. The following scripts
show how to run the DynInst instrumentator from the MOAB/Slurm queue system. The first script just sets the
environment for the job whereas the second is responsible for instrumenting every spawned task.

Listing 8.2: slurm_trace.sh

1 #!/bin/bash
2

3 # @ initialdir = .
4 # @ output = trace.out
5 # @ error = trace.err
6 # @ total_tasks = 4
7 # @ cpus_per_task = 1
8 # @ tasks_per_node = 4
9 # @ wall_clock_limit = 00:10:00

10 # @ tracing = 1
11

12 srun ./run.sh ./mpi_ping

The most important thing in the previous script is the line number 11, which is responsible for spawning the MPI
tasks (using the srun command). The spawn method is told to execute ./run.sh ./mpi_ping which in fact
refers to instrument the mpi_ping binary using the run.sh script. You must adapt this file to your queue-
system (if any) and to your MPI submission mechanism (i.e., change srun to mpirun, mpiexec, poe, etc.). Note
that changing the line 11 to read like ./run.sh srun ./mpi_ping would result in instrumenting the srun
application not mpi_ping.

Listing 8.3: run.sh

1 #!/bin/bash
2

3 export EXTRAE_HOME=@sub_PREFIXDIR@
4 source ${EXTRAE_HOME}/etc/extrae.sh
5

6 # Only show output for task 0, others task send output to /dev/null
7 if test "${SLURM_PROCID}" == "0" ; then
8 ${EXTRAE_HOME}/bin/extrae -config ../extrae.xml $@ > job.out 2> job.err
9 else

10 ${EXTRAE_HOME}/bin/extrae -config ../extrae.xml $@ > /dev/null 2> /dev/null
11 fi

This is the script responsible for instrumenting a single MPI task. In line number 4 we set-up the instrumentation
environment by executing the commands from extrae.sh. Then we execute the binary passed to the run.sh
script in lines 8 and 10. Both lines are executing the same command except that line 8 sends all the output to
two different files (one for standard output and another for standard error) and line 10 sends all the output to
/dev/null.

Please note, this script is particularly adapted to the MOAB/Slurm queue systems. You may need to adapt the
script to other systems by using the appropiate environment variables. Particularly, SLURM_PROCID identifies
the MPI task id (i.e., the task rank) and may be changed to the proper environemnt variable (MPI_RANK in
ParaStation/Torque/MOAB system or MXMPI_ID in systems having Myrinet MX devices, for example).

8.2 LD_PRELOAD based examples

LD_PRELOAD (or LDR_PRELOAD[64] in AIX) interposition mechanism only works for binaries that are linked
against shared libraries. This interposition is done by the runtime loader by substituting the original symbols by
those provided by the instrumentation package. This mechanism is known to work on Linux, FreeBSD and AIX

50 Chapter 8. Examples



Extrae Documentation, Release 4.2.13

operating systems, although it may be available on other operating systems (even using different names2) they are
not tested.

We show how this mechanism works on Linux (or similar environments) in Linux and on AIX in AIX.

8.2.1 Linux

The following script preloads the libmpitrace library to instrument MPI calls of the application passed as an
argument (tune EXTRAE_HOME according to your installation).

Listing 8.4: trace.sh

1 #!/bin/sh
2

3 export EXTRAE_HOME=<WRITE-HERE-THE-PACKAGE-LOCATION>
4 export EXTRAE_CONFIG_FILE=extrae.xml
5 export LD_PRELOAD=${EXTRAE_HOME}/lib/libmpitrace.so
6

7 ## Run the desired program
8 $*

The previous script can be found in ${EXTRAE_HOME}/share/example/MPI/ld-preload in your trac-
ing package directory. Copy the script to one of your directories, tune the EXTRAE_HOME environment variable
and make the script executable (using chmod u+x). Also copy the XML configuration extrae.xml file from
${EXTRAE_HOME}/share/example/MPI to the current directory. This file is used to configure the whole
behavior of the instrumentation package (there is more information about the XML file on chapter Extrae XML
configuration file). The last line in the script, $*, executes the arguments given to the script, so as you can run the
instrumentation by simply adding the script in between your execution command.

Regarding the execution, if you run MPI applications from the command-line, you can issue the typical mpirun
command as:

${MPI_HOME}/bin/mpirun -np N ./trace.sh mpi-app

where ${MPI_HOME} is the directory for your MPI installation, N is the number of MPI tasks you want to run,
and mpi-app is the binary of the MPI application you want to run.

However, if you execute your MPI applications through a queue system you may need to write a submission
script. The following script is an example of a submission script for MOAB/Slurm queuing system using the
aforementioned trace.sh script for an execution of the mpi-app on two processors.

Listing 8.5: slurm-trace.sh

1 #! /bin/bash
2

3 #@ job_name = trace_run
4 #@ output = trace_run%j.out
5 #@ error = trace_run%j.out
6 #@ initialdir = .
7 #@ class = bsc_cs
8 #@ total_tasks = 2
9 #@ wall_clock_limit = 00:30:00

10

11 srun ./trace.sh mpi_app

If your system uses LoadLeveler your job script may look like:

2 Look at http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html for further information.

8.2. LD_PRELOAD based examples 51

http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html


Extrae Documentation, Release 4.2.13

Listing 8.6: ll.sh

1 #! /bin/bash
2 #@ job_type = parallel
3 #@ output = trace_run.ouput
4 #@ error = trace_run.error
5 #@ blocking = unlimited
6 #@ total_tasks = 2
7 #@ class = debug
8 #@ wall_clock_limit = 00:10:00
9 #@ restart = no

10 #@ group = bsc41
11 #@ queue
12

13 export MLIST=/tmp/machine_list ${$}
14 /opt/ibmll/LoadL/full/bin/ll_get_machine_list > ${MLIST}
15 set NP = `cat ${MLIST} | wc -l`
16

17 ${MPI_HOME}/mpirun -np ${NP} -machinefile ${MLIST} ./trace.sh ./mpi-app
18

19 rm ${MLIST}

Besides the job specification given in lines 1-11, there are commands of particular interest. Lines 13-15 are used
to know which and how many nodes are involved in the computation. Such information information is given to
the mpirun command to proceed with the execution. Once the execution finished, the temporal file created on
line 14 is removed on line 19.

8.2.2 CUDA

There are two ways to instrument CUDA applications, depending on how the package was configured. If the
package was configured with --with-cuda only interposition on binaries using shared libraries are available.
If the package was configured with --with-cupti any kind of binary can be instrumented because the instru-
mentation relies on the CUPTI library to instrument CUDA calls. The example shown below is intended for the
former case.

Listing 8.7: run.sh

1 #!/bin/bash
2

3 export EXTRAE_HOME=/home/harald/extrae
4 export PAPI_HOME=/home/harald/aplic/papi/4.1.4
5

6 EXTRAE_CONFIG_FILE=extrae.xml
7 LD_LIBRARY_PATH=${EXTRAE_HOME}/lib:${PAPI_HOME}/lib:${LD_LIBRARY_PATH} ./hello
8 ${EXTRAE_HOME}/bin/mpi2prv -f TRACE.mpits -e ./hello

In this example, the hello application is compiled using the nvcc compiler and linked against the cudatrace
library (-lcudatrace). The binary contains calls to Extrae_init and Extrae_fini and then executes a
CUDA kernel. Line number 6 refers to the execution of the application itself. The Extrae configuration file and
the location of the shared libraries are set in this line. Line number 7 invokes the merge process to generate the
final tracefile.

8.2.3 AIX

AIX typically ships with POE and LoadLeveler as MPI implementation and queue system respectively. An
example for a system with these software packages is given below. Please, note that the example is intended
for 64 bit applications, if using 32 bit applications then LDR_PRELOAD64 needs to be changed in favour of
LDR_PRELOAD.

52 Chapter 8. Examples



Extrae Documentation, Release 4.2.13

Listing 8.8: ll-aix64.sh

1 #@ job_name = basic_test
2 #@ output = basic_stdout
3 #@ error = basic_stderr
4 #@ shell = /bin/bash
5 #@ job_type = parallel
6 #@ total_tasks = 8
7 #@ wall_clock_limit = 00:15:00
8 #@ queue
9

10 export EXTRAE_HOME=<WRITE-HERE-THE-PACKAGE-LOCATION>
11 export EXTRAE_CONFIG_FILE=extrae.xml
12 export LDR_PRELOAD64=${EXTRAE_HOME}/lib/libmpitrace.so
13

14 ./mpi-app

Lines 1-8 contain a basic LoadLeveler job definition. Line 10 sets the Extrae package directory in
EXTRAE_HOME environment variable. Follows setting the XML configuration file that will be used to set up
the tracing. Then follows setting LDR_PRELOAD64 which is responsible for instrumentation using the shared
library libmpitrace.so. Finally, line 14 executes the application binary.

8.3 Statically linked based examples

This is the basic instrumentation method suited for those installations that neither support DynInst nor
LD_PRELOAD, or require adding some manual calls to the Extrae API.

8.3.1 Linking the application

To get the instrumentation working on your code, first you have to link your application with the Extrae libraries.
There are installed examples in your package distribution under $EXTRAE_HOME/share/examples. There
you can find MPI, OpenMP, pthread and sequential examples depending on the support at configure time.

Consider the example Makefile found in $EXTRAE_HOME/share/examples/MPI/static:

Listing 8.9: Makefile

1 MPI_HOME = /gpfs/apps/MPICH2/mx/1.0.7..2/64
2 EXTRAE_HOME = /home/bsc41/bsc41273/foreign-pkgs/extrae-11oct-mpich2/64
3 PAPI_HOME = /gpfs/apps/PAPI/3.6.2-970mp-patched/64
4 XML2_LDFLAGS = -L/usr/lib64
5 XML2_LIBS = -lxml2
6

7 F77 = $(MPI_HOME)/bin/mpif77
8 FFLAGS = -O2
9 FLIBS = $(EXTRAE_HOME)/lib/libmpitracef.a \

10 -L$(PAPI_HOME)/lib -lpapi -lperfctr \
11 $(XML2_LDFLAGS) $(XML2_LIBS)
12

13 all: mpi_ping
14

15 mpi_ping: mpi_ping.f
16 $(F77) $(FFLAGS) mpi_ping.f $(FLIBS) -o mpi_ping
17

18 clean:
19 rm -f mpi_ping *.o pingtmp? TRACE.*

Lines 2-5 are definitions of some Makefile variables to set up the location of different packages needed by the
instrumentation. In particular, EXTRAE_HOME sets where the Extrae package directory is located. In order to

8.3. Statically linked based examples 53



Extrae Documentation, Release 4.2.13

link your application with Extrae you have to add its libraries in the link stage (see lines 9-11 and 16). Besides
file:libmpitracef.a we also add some PAPI libraries (-lpapi), and its dependency (which you may or not need
(-lperfctr), the libxml2 parsing library (-lxml2), and finally, the bfd and liberty libraries (-lbfd and
-liberty), if the instrumentation package was compiled to support merge after trace (see chapter Configuration,
build and installation for further information).

8.3.2 Generating the intermediate files

Executing an application with the statically linked version of the instrumentation package is very similar as the
method shown in LD_PRELOAD based examples. There is, however, a difference: do not set LD_PRELOAD in
trace.sh.

Listing 8.10: trace.sh

1 #!/bin/sh
2

3 export EXTRAE_HOME=WRITE-HERE-THE-PACKAGE-LOCATION
4 export EXTRAE_CONFIG_FILE=extrae.xml
5 export LD_LIBRARY_PATH=${EXTRAE_HOME}/lib: \
6 /gpfs/apps/MPICH2/mx/1.0.7..2/64/lib: \
7 /gpfs/apps/PAPI/3.6.2-970mp-patched/64/lib
8

9 ## Run the desired program
10 $*

See section LD_PRELOAD based examples to know how to run this script either through command line or queue
systems.

8.4 Generating the final tracefile

Independently from the tracing method chosen, it is necessary to translate the intermediate tracefiles into a Paraver
tracefile. The Paraver tracefile can be generated automatically (if the tracing package and the XML configuration
file were set up accordingly, see chapters Configuration, build and installation and Extrae XML configuration
file) or manually. In case of using the automatic merging process, it will use all the resources allocated for the
application to perform the merge once the application ends.

To manually generate the final Paraver tracefile issue the following command:

${EXTRAE_HOME}/bin/mpi2prv -f TRACE.mpits -e mpi-app -o trace.prv

This command will convert the intermediate files generated in the previous step into a single Paraver tracefile.
The TRACE.mpits is a file generated automatically by the instrumentation and contains a reference to all the
intermediate files generated during the execution run. The -e parameter receives the application binary mpi-app
in order to perform translations from addresses to source code. To use this feature, the binary must have been
compiled with debugging information. Finally, the -o flag tells the merger how the Paraver tracefile will be
named (trace.prv in this case).

54 Chapter 8. Examples



CHAPTER

NINE

AN EXAMPLE OF EXTRAE XML CONFIGURATION FILE

<?xml version='1.0'?>

<trace enabled="yes"
home="@sed_MYPREFIXDIR@"
initial-mode="detail"
type="paraver"

>
<mpi enabled="yes">
<counters enabled="yes" />

</mpi>

<pthread enabled="yes">
<locks enabled="no" />
<counters enabled="yes" />

</pthread>

<openmp enabled="yes">
<locks enabled="no" />
<counters enabled="yes" />

</openmp>

<callers enabled="yes">
<mpi enabled="yes">1-3</mpi>
<sampling enabled="no">1-5</sampling>

</callers>

<user-functions enabled="no"
list="/home/bsc41/bsc41273/user-functions.dat"
exclude-automatic-functions="no">
<counters enabled="yes" />

</user-functions>

<counters enabled="yes">
<cpu enabled="yes" starting-set-distribution="1">
<set enabled="yes" domain="all" changeat-globalops="5">
PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_L1_DCM
<sampling enabled="no" period="100000000">PAPI_TOT_CYC</sampling>

</set>
<set enabled="yes" domain="user" changeat-globalops="5">
PAPI_TOT_INS,PAPI_FP_INS,PAPI_TOT_CYC

</set>
</cpu>
<network enabled="yes" />
<resource-usage enabled="yes" />

</counters>

<storage enabled="no">
<trace-prefix enabled="yes">TRACE</trace-prefix>
<size enabled="no">5</size>

55



Extrae Documentation, Release 4.2.13

<temporal-directory enabled="yes">/scratch</temporal-directory>
<final-directory enabled="yes">/gpfs/scratch/bsc41/bsc41273</final-directory>

</storage>

<buffer enabled="yes">
<size enabled="yes">150000</size>
<circular enabled="no" />

</buffer>

<trace-control enabled="yes">
<file enabled="no" frequency="5M">/gpfs/scratch/bsc41/bsc41273/control</file>
<global-ops enabled="no">10</global-ops>
<remote-control enabled="yes">
<mrnet enabled="yes" target="150" analysis="spectral" start-after="30">
<clustering max_tasks="26" max_points="8000"/>
<spectral min_seen="1" max_periods="0" num_iters="3" signals="DurBurst,

↪→InMPI"/>
</mrnet>

</remote-control>
</trace-control>

<others enabled="yes">
<minimum-time enabled="no">10M</minimum-time>
<finalize-on-signal enabled="yes"

SIGUSR1="no" SIGUSR2="no" SIGINT="yes"
SIGQUIT="yes" SIGTERM="yes" SIGXCPU="yes"
SIGFPE="yes" SIGSEGV="yes" SIGABRT="yes"

/>
<flush-sampling-buffer-at-instrumentation-point enabled="yes" />

</others>

<burst enabled="no" threshold="500u" mpi-statistics="yes" omp-statistics="yes"
↪→omp-summarization="no" />

<sampling enabled="no" type="default" period="50m" variability="10m"/>

<opencl enabled="no" />

<openacc enabled="no" />

<cuda enabled="no" />

<!-- Beware: High overhead! -->
<cpu-events enabled="no" frequency="0" emit-always="no" poi="openmp"/>

<merge enabled="yes"
synchronization="default"
binary="mpi_ping"
tree-fan-out="16"
max-memory="512"
joint-states="yes"
keep-mpits="yes"
sort-addresses="yes"
overwrite="yes"

>
mpi_ping.prv

</merge>

</trace>

56 Chapter 9. An example of Extrae XML configuration file



CHAPTER

TEN

ENVIRONMENT VARIABLES

Althouth Extrae is configured through an XML file (which is pointed by EXTRAE_CONFIG_FILE), it also
supports minimal configuration via environment variables for those systems that do not have the library responsible
for parsing the XML files (i.e., libxml2).

This appendix presents the environment variables Extrae package uses if EXTRAE_CONFIG_FILE is not set
and their description. For those environment variables that refer to XML enabled attributes (i.e., that can be set
to “yes” or “no”) are considered to be enabled if their value is defined to 1.

EXTRAE_BUFFER_SIZE

Sets the number of records that the instrumentation buffer can hold before flushing them.

EXTRAE_COUNTERS

See section Processor performance counters. Just one set can be defined. Counters (in PAPI) groups (in PMAPI)
are given separated by commas.

EXTRAE_CONTROL_FILE

The instrumentation will be enabled only when the pointed file exists.

EXTRAE_CONTROL_GLOPS

Starts the instrumentation when the specified number of global collectives have been executed.

EXTRAE_CONTROL_TIME

Checks the file pointed by EXTRAE_CONTROL_FILE at this period.

EXTRAE_DIR

Specifies where temporal files will be created during instrumentation.

EXTRAE_DISABLE_MPI

Disables MPI instrumentation.

EXTRAE_DISABLE_OMP

Disables OpenMP instrumentation.

EXTRAE_DISABLE_PTHREAD

Disables pthread instrumentation.

EXTRAE_FILE_SIZE

Sets the maximum size (in Mbytes) for the intermediate trace file.

EXTRAE_FUNCTIONS

List of routines to be instrumented, as described in section XML Section: User functions, using the GNU C
compiler -fininstrument-funtions option, or the IBM XL compiler -qdebug=function_trace
option at compile and link time.

EXTRAE_FUNCTIONS_COUNTERS_ON

Specifies if the performance counters should be collected when a user function event is emitted.

57



Extrae Documentation, Release 4.2.13

EXTRAE_FINAL_DIR

Specifies where files will be stored when the application ends.

EXTRAE_GATHER_MPITS

Gathers intermediate trace files into a single directory. Only available when instrumenting MPI applications.

EXTRAE_HOME

Points where Extrae is installed.

EXTRAE_INITIAL_MODE

Chooses whether the instrumentation runs in detail or in bursts mode.

EXTRAE_BURST_THRESHOLD

Specifies the threshold time to filter running bursts.

EXTRAE_MAX_MPI_HANDLES

Specifies the threshold from which proxy handles for MPI_Request and MPI_Status objects will be allocated
dynamically (set to 0 for all). Only available when instrumenting MPI applications.

EXTRAE_MINIMUM_TIME

Specifies the minimum amount of instrumentation time.

EXTRAE_MPI_CALLER

Chooses which MPI calling routines should be dumped to the tracefile.

EXTRAE_MPI_COUNTERS_ON

Set to 1 if MPI must report performance counter values.

EXTRAE_MPI_STATISTICS

Set to 1 if basic MPI statistics must be collected in burst mode. Only available in systems with Myrinet GM/MX
networks.

EXTRAE_NETWORK_COUNTERS

Set to 1 to dump network performance counters values.

EXTRAE_PTHREAD_COUNTERS_ON

Set to 1 if pthread must report performance counters values.

EXTRAE_OMP_COUNTERS_ON

Set to 1 if OpenMP must report performance counters values.

EXTRAE_PTHREAD_LOCKS

Set to 1 if pthread locks have to be instrumented.

EXTRAE_OMP_LOCKS

Set to 1 if OpenMP locks have to be instrumented.

EXTRAE_ON

Enables instrumentation.

EXTRAE_PROGRAM_NAME

Specifies the prefix of the resulting intermediate trace files.

EXTRAE_SAMPLING_CALLER

Determines the callstack segment stored through time-sampling capabilities.

EXTRAE_SAMPLING_CLOCKTYPE

Determines domain for sampling clock. Options are: DEFAULT, REAL, VIRTUAL and PROF.

58 Chapter 10. Environment variables



Extrae Documentation, Release 4.2.13

EXTRAE_SAMPLING_PERIOD

Enables time-sampling capabilities with the indicated period.

EXTRAE_SAMPLING_VARIABILITY

Adds some variability to the sampling period.

EXTRAE_RUSAGE

Instrumentation emits resource usage at flush points if set to 1.

EXTRAE_SKIP_AUTO_LIBRARY_INITIALIZE

Do not init instrumentation automatically in the main symbol.

EXTRAE_TRACE_TYPE

Chooses whether the resulting tracefiles are intended for Paraver or Dimemas.

59



Extrae Documentation, Release 4.2.13

60 Chapter 10. Environment variables



CHAPTER

ELEVEN

RUNNING EXTRAE ON TOP OF PNMPI

11.1 Introduction

Most tools targeting MPI rely on the MPI Profiling Interface (PMPI), which allows tools to transparently intercept
invocations to MPI routines and with that to establish wrappers around MPI calls to gather execution information.
However, the usage of this interface is limited to a single tool. PnMPI eliminates the restriction of a single PMPI
tool layer per execution. It can dynamically load and chain multiple PMPI tools into a single tool stack and then
interject this complete stack between the target application and the library without changing the view for each
individual tool. It enables the user to combine arbitrary MPI tools without having to reimplement them. When
Extrae is operating through LD_PRELOAD interposition it also supports to run on top of PnMPI.

11.2 Instructions to run with PnMPI

Extrae tracing libraries have to be processed with the patch tool that comes included with PnMPI. Just run this
utility, passing as argument the tracing library that you want to load under the PnMPI environment and the output
name for the patched library.

$PNMPI_HOME/patch/patch libmpitrace.so libmpitrace-pnmpi.so

At execution time the PNMPI_CONF environment variable has to be defined, pointing to a file that specifies all
the tools that will be loaded with PnMPI.

export PNMPI_CONF=$PNMPI_HOME/demo/.pnmpi-conf

In this file we have to add the patched tracing library at the beginning of the list.

module libmpitrace-pnmpi
module another-tool
...

61



Extrae Documentation, Release 4.2.13

62 Chapter 11. Running Extrae on top of PnMPI



CHAPTER

TWELVE

REGRESSION TESTS

Extrae includes a battery of regression tests to evaluate whether recent versions of the instrumentation package
keep their compatibility and that new changes on it have not introduced new faults.

These tests are meant to be executed in the same machine on which Extrae was compiled and they are not intended
to support its execution through batch-queuing systems nor cross-compilation processes.

To invoke the tests, simply run from the terminal the following command:

make check

after the configuration and building process. It will automatically invoke all the tests one after another and will
produce several summaries.

These tests are divided into different categories that stress different parts of Extrae.

The current categories tested include, but are not limited to:

• Clock routines

• Instrumentation support

– Event definition in the PCF from the Extrae API

– pthread instrumentation

– MPI instrumentation

– Java instrumentation

• Merging process (i.e., mpi2prv)

• Callstack unwinding (either using libunwind library or backtrace)

• Performance hardware counters through PAPI library

• XML parsing through libxml2

These tests may change during the development of Extrae.

If the reader has a particular suggestion on a particular test, please consider sending it to tools@bsc.es for its
consideration.

63

mailto:tools@bsc.es


Extrae Documentation, Release 4.2.13

64 Chapter 12. Regression tests



CHAPTER

THIRTEEN

OVERHEAD

Extrae includes a set of tests to evaluate the overhead imposed to the application by different components.

These tests are installed in $EXTRAE_HOME/share/tests/overhead and can be run by executing the
run_overhead_tests.sh script within this directory.

Note that this script compiles and executes the generated binaries on the same system, so this script will require
some tuning to run in a system that uses a batch-queuing system and/or needs cross-compiling.

Currently there are the following tests the evaluate the necessary time to perform certain operations:

• posix_clock grab the current time using the posix clock. Even the simpler emitted event requires gathering
a timestamp.

• extrae_event emit one event (without performance counters) into the tracing buffer using the Extrae_event
API call.

• extrae_nevent4 emit four events (without performance counters) into the tracing buffer using the Ex-
trae_nevent4 API call.

• extrae_eventandcounters emit one event (and reading 4 peformance counters) into the tracing buffer
through the Extrae_eventandcounters call.

• papi_read1 capture the value of one performance counter through PAPI.

• papi_read4 capture the value of four performance counters through PAPI.

• extrae_user_function involves traversing the processor call-stack while searching the frame that points to
the current routine (as the Extrae_user_function API call).

• extrae_get_caller1 traverses one level of the processor call-stack.

• extrae_get_caller6 traverses six levels of the processor call-stack.

• extrae_trace_callers collects three frames from the processor call-stack.

• extrae_event_Java measures the time required to emit one event (without performance counters) from Java
through the JNI connector.

• extrae_nevent4_Java measures the time needed to emit four events (without performance counters) from
Java through the JNI connector.

Figure 13.1 depicts the overhead of Extrae 4.2.13 in the following systems:

• System based on Intel Xeon E5649 (Nehalem) processors. Extrae was compiled with support for
libunwind 1.1 and PAPI 5.0.1.

• System based on Intel Xeon E5-2670 (SandyBridge) processors. Extrae was compiled with support
for libunwind 1.1, PAPI 5.4.1 and IBM’s Java7.

• System based on Intel Xeon E5-2680 (Haswell) processors. Extrae was compiled with support for
libunwind 1.1 and PAPI 5.4.1 and OpenJDK’s Java 1.8.

• System based on IBM Power8. Extrae was compiled with support for libunwind (downloaded from GIT)
and PAPI 5.4.1.

65



Extrae Documentation, Release 4.2.13

• System based on Cortex-A15 (Samsung Exynos 5). Extrae was compiled with support for libunwind
(downloaded from GIT) and PAPI 5.4.1.

The reader may notice that the ARM processor requires more time to execute the tests than the rest, even for the
simpler cases (posix_clock and extrae_event). The Power8-based system takes a similar amount of time
than Intel-based systems except for the call-stack traversal. Within Intel-based systems, the SandyBridge processor
reduced the time significantly from the Nehalem processor but the Haswell does not show a great reduction from
SandyBridge.

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

po
si
x c

lo
ck

ex
tr
ae

e
ve

nt

ex
tr
ae

n
ev

en
t4

ex
tr
ae

e
ve

nt
an

dc
ou

nt
er

s

pa
pi r

ea
d1

pa
pi r

ea
d4

ex
tr
ae

u
se

r fu
nc

tio
n

ex
tr
ae

g
et

c
al
le
r1

ex
tr
ae

g
et

c
al
le
r6

ex
tr
ae

tr
ac

e c
al
le
rs

ex
tr
ae

e
ve

nt
/ja

va

ex
tr
ae

e
ve

nt
4/

ja
vaB

e
s
t 

ti
m

e
 (

n
s
) 

fr
o
m

 1
0

 r
u
n
s

Execution test

Extrae/3.4.1 overhead

Intel Xeon E56492.53GHz
Intel Xeon E5-26702.60GHz
Intel Xeon CPU E5-2680v32.50GHz
IBM Power8E2.79GHz
Cortex-A151.7GHz

Figure 13.1: Overhead result in a variety of systems for Extrae 4.2.13

66 Chapter 13. Overhead



CHAPTER

FOURTEEN

FREQUENTLY ASKED QUESTIONS

14.1 Configure, compile and link FAQ

Question:

The bootstrap script claims libtool errors like:

• src/common/Makefile.am:9: Libtool library used but 'LIBTOOL'
is undefined

• src/common/Makefile.am:9: The usual way to define 'LIBTOOL' is
to add 'AC_PROG_LIBTOOL'

• src/common/Makefile.am:9: to 'configure.ac' and run 'aclocal'
and 'autoconf' again.

• src/common/Makefile.am:9: If 'AC_PROG_LIBTOOL' is in
'configure.ac', make sure

• src/common/Makefile.am:9: its definition is in aclocal's
search path.

Answer: Add to the aclocal (which is called in bootstrap) the directory where it can find the M4-macro
files from libtool. Use the -I option to add it.

Question:

The bootstrap script claims that some macros are not found in the library, like:

• aclocal:configure.ac:338: warning: macro 'AM_PATH_XML2' not
found in library

Answer: Some M4 macros are not found. In this specific example, the libxml2 is not installed or cannot be found
in the typical installation directory. To solve this issue, check whether the libxml2 is installed and modify
the line in the bootstrap script that reads aclocal -I config to aclocal -I config -I/
path/to/xml/m4/macros where /path/to/xml/m4/macros is the directory where the libxml2
M4 got installed (for example /usr/local/share/aclocal).

Question:

The application cannot be linked succesfully. The link stage complains about, or something similar,
to:

• ld: 0711-317 ERROR: Undefined symbol: .__udivdi3.

• ld: 0711-317 ERROR: Undefined symbol: .__mulvsi3.

67



Extrae Documentation, Release 4.2.13

Answer: The instrumentation libraries have been compiled with GNU compilers whereas the application is com-
piled using IBM XL compilers. Add the libgcc’s library to the link stage of the application. This library can
be found under the installation directory of the GNU compiler.

Question:

The application cannot be linked. The linker misses some routines like:

• src/common/utils.c:122: undefined reference to
'__intel_sse2_strlen'.

• src/common/utils.c:125: undefined reference to
'__intel_sse2_strdup'.

• src/common/utils.c:132: undefined reference to
'__intel_sse2_strtok'.

• src/common/utils.c:100: undefined reference to
'__intel_sse2_strncpy'.

• src/common/timesync.c:211: undefined reference to
'__intel_fast_memset'.

Answer: The instrumentation libraries have been compiled using Intel compilers (i.e., icc, icpc) whereas the
application is being linked through non-Intel compilers or ld directly. You can proceed in three directions,
you can either compile your application using the Intel compilers, or add an Intel library that provides
these routines (libintlc.so and libirc.so, for instance), or even recompile Extrae using the GNU
compilers. Note, nonetheless, that using Intel MPI compiler does not guarantee using the Intel compiler
backends, just run the MPI compiler (mpicc, mpiCC, mpif77, mpif90, . . . ) with the -v flag to get
information on what compiler backend relies.

Question:

The make command dies when building libraries belonging Extrae in an AIX machine with messages
like:

• libtool: link: ar cru libcommon.a libcommon_la-utils.o
libcommon_la-events.o

• ar: 0707-126 libcommon\_la-utils.o is not valid with the
current object file mode.

Use the -X option to specify the desired object mode.

• ar: 0707-126 libcommon\_la-events.o is not valid with the
current object file mode.

Use the -X option to specify the desired object mode.

Answer: libtool uses the ar command to build static libraries. However, ar does need special flags (-X64)
to deal with 64 bit objects. To workaround this problem, just set the environment variable OBJECT_MODE
to 64 before executing gmake. The ar command honors this variable to properly handle the object files in
64 bit mode.

Question:

The configure script dies saying:

configure: error: Unable to determine pthread library support.

Answer: Some systems (like BG/L) does not provide a pthread library and configure claims that cannot find
it. Launch the configure script with the -disable-pthread parameter.

68 Chapter 14. Frequently Asked Questions



Extrae Documentation, Release 4.2.13

Question:

gmake command fails when compiling the instrumentation package in a machine running AIX op-
erating system, using 64 bit mode and IBM XL compilers complaining about Profile MPI (PMPI)
symbols.

Answer: Use the reentrant version of IBM compilers (xlc_r and xlC_r). Non reentrant versions of MPI
library do not include 64 bit MPI symbols, whereas reentrant versions do. To use these compilers, set the
CC (C compiler) and CXX (C++ compiler) environment variables before running the configure script.

Question:

The compiler fails complaining that some parameters can not be understood when compiling the
parallel merge.

Answer: If the environment has more than one compiler (for example, IBM and GNU compilers), is it possible
that the parallel merge compiler is not the same as the rest of the package. There are two ways to solve this:

• Force the package compilation with the same backend as the parallel compiler. For example, for IBM
compiler, set CC=xlc and CXX=xlC at the configure step.

• Tell the parallel compiler to use the same compiler as the rest of the package. For example, for IBM
compiler mpcc, set MP_COMPILER=gcc when issuing the make command.

Question:

The instrumentation package does not generate the shared instrumentation libraries but generates the
satatic instrumentation libraries.

Answer 1: Check that the configure step was compiled without --disable-shared or force it to be enabled
through --enable-shared.

Answer 2: Some MPI libraries (like MPICH 1.2.x) do not generate the shared libraries by default. The instru-
mentation package rely on them to generate its shared libraries, so make sure that the shared libraries of the
MPI library are generated.

Question:

In BlueGene systems where the libxml2 (or any optional library for extrae) the linker shows error
messages like when compiling the final application with the Extrae library:

• ../libxml2/lib/libxml2.a(xmlschemastypes.o): In function
'_xmlSchemaDateAdd'

• ../libxml2-2.7.2/xmlschemastypes.c:3771: undefined reference
to '__uitrunc'

• ../libxml2-2.7.2/xmlschemastypes.c:3796: undefined reference
to '__uitrunc'

• ../libxml2-2.7.2/xmlschemastypes.c:3801: undefined reference
to '__uitrunc'

• ../libxml2-2.7.2/xmlschemastypes.c:3842: undefined reference
to '__uitrunc'

• ../libxml2-2.7.2/xmlschemastypes.c:3843: undefined reference
to '__uitrunc'

14.1. Configure, compile and link FAQ 69



Extrae Documentation, Release 4.2.13

• ../libxml2/lib/libxml2.a(xmlschemastypes.o): In function
'xmlSchemaGetCanonValue'

• ../libxml2-2.7.2/xmlschemastypes.c:5840: undefined reference
to '__f64tou64rz'

• ../libxml2-2.7.2/xmlschemastypes.c:5843: undefined reference
to '__f64tou64rz'

• ../libxml2-2.7.2/xmlschemastypes.c:5846: undefined reference
to '__f64tou64rz'

• ../libxml2-2.7.2/xmlschemastypes.c:5849: undefined reference
to '__f64tou64rz'

• ../libxml2/lib/libxml2.a(debugXML.o): In function 'xmlShell'

• ../libxml2-2.7.2/debugXML.c:2802: undefined reference to
'_fill'

• collect2: ld returned 1 exit status

Answer: The libxml2 library (or any other optional library) has been compiled using the IBM XL compiler.
There are two alternatives to circumvent the problem: add the XL libraries into the link stage when building
your application, or recompile the libxml2 library using the GNU gcc cross compiler for BlueGene.

Question:

Where do I get the procedure and constant declarations for Fortran?

Answer: You can find a module (ready to be compiled) in $EXTRAE_HOME/include/extrae_module.f.
To use the module, just compile it (do not link it), and then use it in your compiling / linking step. If you do
not use the module, the trace generation (specially for those routines that expect parameters which are not
INTEGER*4) can result in type errors and thus generate a tracefile that does not honor the Extrae calls.

14.2 Execution FAQ

Question:

I executed my application instrumenting with Extrae, even though it appears that Extrae is not in-
trumenting anything. There is neither any Extrae message nor any Extrae output files (file:set-X/*.
mpit).

Answer 1: Check that environment variables are correctly passed to the application.

Answer 2: If the code is Fortran, check that the number of underscores used to decorate routines in the instru-
mentation library matches the number of underscores added by the Fortran compiler you used to compile
and link the application. You can use the nm and grep commands to check it.

Answer 3: If the code is MPI and Fortran, check that you’re using the proper Fortran library for the instrumenta-
tion.

Answer 4: If the code is MPI and you are using LD_PRELOAD, check that the binary is linked against a shared
MPI library (you can use the ldd command).

Question:

Why are the environment variables not exported?

70 Chapter 14. Frequently Asked Questions



Extrae Documentation, Release 4.2.13

Answer: MPI applications are launched using special programs (like mpirun, poe, mprun, srun, . . . ) that
spawn the application for the selected resources. Some of these programs do not export all the environment
variables to the spawned processes. Check if the the launching program does have special parameters to do
that, or use the approach used on section Examples based on launching scripts instead of MPI applications.

Question:

The instrumentation begins for a single process instead for several processes.

Answer 1: Check that you place the appropriate parameter to indicate the number of tasks (typically -np).

Answer 2: Some MPI implementation require the application to receive special MPI parameters to run correctly.
For example, MPICH based on CH-P4 device require the binary to receive som paramters. The following
example is an sh-script that solves this issue:

#!/bin/sh
EXTRAE_CONFIG_FILE=extrae.xml ./mpi_program $@ real_params

Question:

The application blocks at the beginning.

Answer: The application may be waiting for all tasks to startup but only some of them are running. Check for
the previous question.

Question:

The resulting traces do not contain the routines that have been instrumented.

Answer 1: Check that the routines have been actually executed.

Answer 2: Some compilers do automatic inlining of functions at some optimization levels (e.g., Intel Compiler
at -O2). When functions are inlined, they do not have entry and exit blocks and cannot be instrumented.
Turn off inlining or decrease the optimization level.

Question:

Number of threads = 1?

Answer: Some MPI launchers (i.e., mpirun, poe, mprun, . . . )

Question:

When running the instrumented application, the loader complains about: undefined symbol:
clock_gettime

Answer: The instrumentation package was configured using --enable-posix-clock` and on many sys-
tems this implies the inclusion of additional libraries (namely, -lrt)

Question:

Extrae asks to run genstubs-kmpc-11.sh increasing the value of MAX_WRAPPERS.

Answer: Get the sources from GitHub and modify the file src/tracer/wrappers/OMP/
genstubs-kmpc-11.sh changing MAX_WRAPPERS to the desired number. After modifying
with above changes, run the file ./genstubs-kmpc-11.sh which will generate files that are

14.2. Execution FAQ 71

https://github.com/bsc-performance-tools/extrae


Extrae Documentation, Release 4.2.13

necesary to recompile Extrae. To recompile Extrae, check how Extrae is configured by running
${EXTRAE_HOME}/etc/configured.sh. This will show the compiler, the flags associated with
Extrae and various paths to different libraries. If everything looks correct, proceed with the recompilation
of Extrae by running configure, make and make install.

Question:

Extrae asks to run genstubs-libgomp.sh increasing the value of DOACROSS_MAX_NESTING.

Answer: Get the sources from GitHub and modify the file src/tracer/wrappers/OMP/
genstubs-libgomp.sh changing DOACROSS_MAX_NESTING to the desired number. After
modifying with above changes, run the file ./genstubs-libgomp.sh which will generate files that
are necesary to recompile Extrae. To recompile Extrae, check how Extrae is configured by running
${EXTRAE_HOME}/etc/configured.sh. This will show the compiler, the flags associated with
Extrae and various paths to different libraries. If everything looks correct, proceed with the recompilation
of Extrae by running configure, make and make install

14.3 Performance monitoring counters FAQ

Question:

How do I know the available performance counters on the system?

Answer 1: If using PAPI, check the papi_avail or papi_native_avail commands found in the PAPI
installation directory.

Answer 2: If using PMAPI (on AIX systems), check for the pmlist command. Specifically, check for the
available groups running pmlist -g -1.

Question:

How do I know how many performance counters can I use?

Answer: The Extrae package can gather up to eight (8) performance counters at the same time. This also depends
on the underlying library used to gather them.

Question:

When using PAPI, I cannot read eight performance counters or the specified in papi_avail output.

Answer 1: There are some performance counters (those listed in papi_avail) that are classified as derived.
Such performance counters depend on more than one counter increasing the number of real performance
counters used. Check for the derived column within the list to check whether a performance counter is
derived or not.

Answer 2: On some architectures, like the PowerPC, the performance counters are grouped in a such way that
choosing a performance counter precludes others from being elected in the same set. A feasible work-
around is to create as many sets in the XML file to gather all the required hardware counters and make sure
that the sets change from time to time.

14.4 Merging traces FAQ

72 Chapter 14. Frequently Asked Questions

https://github.com/bsc-performance-tools/extrae


Extrae Documentation, Release 4.2.13

Question:

The mpi2prv command shows the following messages at the start-up:

PANIC! Trace file TRACE.0000011148000001000000.mpit is 16 bytes
too big! PANIC! Trace file TRACE.0000011147000002000000.mpit is 32
bytes too big! PANIC! Trace file TRACE.0000011146000003000000.mpit
is 16 bytes too big!

and it dies when parsing the intermediate files.

Answer 1: The aforementioned messages are typically related with incomplete writes in disk. Check for enough
disk space using the quota and df commands.

Answer 2: If your system supports multiple ABIs (for example, linux x86-64 supports 32 and 64 bits ABIs),
check that the ABI of the target application and the ABI of the merger match.

Question:

The resulting Paraver tracefile contains invalid references to the source code.

Answer: This usually happens when the code has not been compiled and linked with the -g flag. If your code
invokes CUDA kernels you may also need to link with the --generate-line-info flag to generate
debug symbols for device code. Moreover, some high level optimizations (which includes inlining, inter-
procedural analysis, and so on) can lead to generate bad references.

Question:

The resulting trace contains information regarding the stack (like callers) but their value does not
coincide with the source code.

Answer: Check that the same binary is used to generate the trace and referenced with the the -e parameter when
generating the Paraver tracefile.

14.4. Merging traces FAQ 73



Extrae Documentation, Release 4.2.13

74 Chapter 14. Frequently Asked Questions



CHAPTER

FIFTEEN

SUBMITTING A BUG REPORT

Whenever encountering that Extrae fails while instrumenting an application or generating a trace-file, you may
consider to submit a bug report to tools@bsc.es.

Before submitting a bug report, consider looking at the Frequently Asked Questions in appendix Frequently Asked
Questions because it may contain valuable information to address the failure you observe.

In any case, if you find that Extrae fails and you want to submit a bug report, please collect as much as information
possible to ease the bug-hunting process.

The information required depen whether the bug refers to a compilation or an execution issue.

15.1 Reporting a compilation issue

The following list of items are valuable when reporting a compilation problem:

• Extrae version (this information appears in the first messages of the execution).

• Extrae configuration information, such as:

– the configure output and the generated config.log file.

– versions of any additional libraries (PAPI, libunwind, DynInst, CUDA, OpenACC, OpenCL, libxml2,
libdwarf, libelf, . . . )

• The compilation error itself as reported by invoking make V=1.

15.2 Reporting an execution issue

The following list of items are valuable when reporting an execution problem:

• Extrae version (this information appears in the first messages of the execution).

• Extrae configuration information, such as:

– the configure output and the generated config.log file,

– versions of any additional libraries (PAPI, libunwind, DynInst, CUDA, OpenACC, OpenCL, libxml2,
libdwarf, libelf, . . . ), and/or

– the ${EXTRAE_HOME}/etc/configured.sh output.

• The result of the make check command after the Extrae compilation process.

• Does the application successfully executes with and without Extrae?

• Any valuable information from the system (type of processor, network, . . . ).

• Which type of parallel programming paradigm does the application use: MPI, OpenMP, OmpSs, pthreads,
. . . , hybrid?

• How do you execute the application? Which instrumentation library do you use?

75

mailto:tools@bsc.es


Extrae Documentation, Release 4.2.13

• The Extrae configuration file used.

• Any output generated by the application execution (in either the output or error channels).

• If the execution generates a core dump, a backtrace of the dump using the where command of the gdb
debugger.

76 Chapter 15. Submitting a bug report



CHAPTER

SIXTEEN

INSTRUMENTED ROUTINES

16.1 MPI

These are the instrumented MPI routines in the Extrae package:

• MPI_Init

• MPI_Init_thread1

• MPI_Finalize

• MPI_Bsend

• MPI_Ssend

• MPI_Rsend

• MPI_Send

• MPI_Bsend_init

• MPI_Ssend_init

• MPI_Rsend_init

• MPI_Send_init

• MPI_Ibsend

• MPI_Issend

• MPI_Irsend

• MPI_Isend

• MPI_Recv

• MPI_Irecv

• MPI_Recv_init

• MPI_Reduce

• MPI_Ireduce

• MPI_Reduce_scatter

• MPI_Ireduce_scatter

• MPI_Allreduce

• MPI_Iallreduce

• MPI_Barrier

• MPI_Ibarrier
1 The MPI library must support this routine

77



Extrae Documentation, Release 4.2.13

• MPI_Cancel

• MPI_Test

• MPI_Wait

• MPI_Waitall

• MPI_Waitany

• MPI_Waitsome

• MPI_Bcast

• MPI_Ibcast

• MPI_Alltoall

• MPI_Ialltoall

• MPI_Alltoallv

• MPI_Ialltoallv

• MPI_Allgather

• MPI_Iallgather

• MPI_Allgatherv

• MPI_Iallgatherv

• MPI_Gather

• MPI_Igather

• MPI_Gatherv

• MPI_Igatherv

• MPI_Scatter

• MPI_Iscatter

• MPI_Scatterv

• MPI_Iscatterv

• MPI_Comm_rank

• MPI_Comm_size

• MPI_Comm_create

• MPI_Comm_create_group

• MPI_Comm_free

• MPI_Comm_dup

• MPI_Comm_dup_with_info

• MPI_Comm_split

• MPI_Comm_split_type

• MPI_Comm_spawn

• MPI_Comm_spawn_multiple

• MPI_Cart_create

• MPI_Cart_sub

• MPI_Start

• MPI_Startall

78 Chapter 16. Instrumented routines



Extrae Documentation, Release 4.2.13

• MPI_Request_free

• MPI_Scan

• MPI_Iscan

• MPI_Sendrecv

• MPI_Sendrecv_replace

• MPI_File_open2

• MPI_File_close2

• MPI_File_read2

• MPI_File_read_all2

• MPI_File_read_all_begin2

• MPI_File_read_all_end2

• MPI_File_read_at2

• MPI_File_read_at_all2

• MPI_File_read_at_all_begin2

• MPI_File_read_at_all_end2

• MPI_File_read_ordered2

• MPI_File_read_ordered_begin2

• MPI_File_read_ordered_end2

• MPI_File_read_shared2

• MPI_File_write2

• MPI_File_write_all2

• MPI_File_write_all_begin2

• MPI_File_write_all_end2

• MPI_File_write_at2

• MPI_File_write_at_all2

• MPI_File_write_at_all_begin2

• MPI_File_write_at_all_end2

• MPI_File_write_ordered2

• MPI_File_write_ordered_begin2

• MPI_File_write_ordered_end2

• MPI_File_write_shared2

• MPI_Compare_and_swap3

• MPI_Fetch_and_op3

• MPI_Get3

• MPI_Put3

• MPI_Win_complete3

• MPI_Win_create3

2 The MPI library must support MPI/IO routines
3 The MPI library must support 1-sided (or RMA -remote memory address-) routines

16.1. MPI 79



Extrae Documentation, Release 4.2.13

• MPI_Win_fence3

• MPI_Win_flush3

• MPI_Win_flush_all3

• MPI_Win_flush_local3

• MPI_Win_flush_local_all3

• MPI_Win_free3

• MPI_Win_post3

• MPI_Win_start3

• MPI_Win_wait3

• MPI_Probe

• MPI_Iprobe

• MPI_Testall

• MPI_Testany

• MPI_Testsome

• MPI_Request_get_status

• MPI_Intercomm_create

• MPI_Intercomm_merge

• MPI_Graph_create

• MPI_Dist_graph_create

• MPI_Neighbor_allgather

• MPI_Ineighbor_allgather

• MPI_Neighbor_allgatherv

• MPI_Ineighbor_allgatherv

• MPI_Neighbor_alltoall

• MPI_Ineighbor_alltoall

• MPI_Neighbor_alltoallv

• MPI_Ineighbor_alltoallv

• MPI_Neighbor_alltoallw

• MPI_Ineighbor_alltoall

16.2 OpenMP

16.2.1 Intel compilers - icc, iCC, ifort

The instrumentation of the Intel OpenMP runtime for versions 8.1 to 10.1 is only available using the Extrae
package based on DynInst library.

These are the instrument routines of the Intel OpenMP runtime functions using DynInst:

• __kmpc_fork_call

• __kmpc_barrier

• __kmpc_invoke_task_func

80 Chapter 16. Instrumented routines



Extrae Documentation, Release 4.2.13

• __kmpc_set_lock4

• __kmpc_unset_lock4

The instrumentation of the Intel OpenMP runtime for version 11.0 to 12.0 is available using the Extrae package
based on the LD_PRELOAD and also the DynInst mechanisms. The instrumented routines include:

• __kmpc_fork_call

• __kmpc_barrier

• __kmpc_dispatch_init_4

• __kmpc_dispatch_init_8

• __kmpc_dispatch_next_4

• __kmpc_dispatch_next_8

• __kmpc_dispatch_fini_4

• __kmpc_dispatch_fini_8

• __kmpc_single

• __kmpc_end_single

• __kmpc_critical4

• __kmpc_end_critical4

• omp_set_lock4

• omp_unset_lock4

• __kmpc_omp_task_alloc

• __kmpc_omp_task_begin_if0

• __kmpc_omp_task_complete_if0

• __kmpc_omp_taskwait

16.2.2 IBM compilers - xlc, xlC, xlf

Extrae supports IBM OpenMP runtime 1.6.

These are the instrumented routines of the IBM OpenMP runtime:

• _xlsmpParallelDoSetup_TPO

• _xlsmpParRegionSetup_TPO

• _xlsmpWSDoSetup_TPO

• _xlsmpBarrier_TPO

• _xlsmpSingleSetup_TPO

• _xlsmpWSSectSetup_TPO

• _xlsmpRelDefaultSLock4

• _xlsmpGetDefaultSLock4

• _xlsmpGetSLock4

• _xlsmpRelSLock4

4 The instrumentation of OpenMP locks can be enabled/disabled

16.2. OpenMP 81



Extrae Documentation, Release 4.2.13

16.2.3 GNU compilers - gcc, g++, gfortran

Extrae supports GNU OpenMP runtime 4.2 and 4.9.

These are the instrumented routines of the GNU OpenMP runtime:

• GOMP_parallel_start

• GOMP_parallel_sections_start

• GOMP_parallel_end

• GOMP_sections_start

• GOMP_sections_next

• GOMP_sections_end

• GOMP_sections_end_nowait

• GOMP_loop_end

• GOMP_loop_end_nowait

• GOMP_loop_static_start

• GOMP_loop_dynamic_start

• GOMP_loop_guided_start

• GOMP_loop_runtime_start

• GOMP_loop_ordered_static_start

• GOMP_loop_ordered_dynamic_start

• GOMP_loop_ordered_guided_start

• GOMP_loop_ordered_runtime_start

• GOMP_loop_static_next

• GOMP_loop_dynamic_next

• GOMP_loop_guided_next

• GOMP_loop_runtime_next

• GOMP_parallel_loop_static_start

• GOMP_parallel_loop_dynamic_start

• GOMP_parallel_loop_guided_start

• GOMP_parallel_loop_runtime_start

• GOMP_barrier

• GOMP_critical_start4

• GOMP_critical_end4

• GOMP_critical_name_start4

• GOMP_critical_name_end4

• GOMP_atomic_start4

• GOMP_atomic_end4

• GOMP_task

• GOMP_taskwait

• GOMP_parallel

• GOMP_taskgroup_start

82 Chapter 16. Instrumented routines



Extrae Documentation, Release 4.2.13

• GOMP_taskgroup_end

16.3 pthread

These are the instrumented routines of the pthread runtime:

• pthread_create

• pthread_detach

• pthread_join

• pthread_exit

• pthread_barrier_wait

• pthread_mutex_lock

• pthread_mutex_trylock

• pthread_mutex_timedlock

• pthread_mutex_unlock

• pthread_rwlock_rdlock

• pthread_rwlock_tryrdlock

• pthread_rwlock_timedrdlock

• pthread_rwlock_wrlock

• pthread_rwlock_trywrlock

• pthread_rwlock_timedwrlock

• pthread_rwlock_unlock

16.4 CUDA

These are the instrumented CUDA routines in the Extrae package:

• cudaLaunch

• cudaConfigureCall

• cudaThreadSynchronize

• cudaThreadExit

• cudaStreamCreate

• cudaStreamCreateWithFlags

• cudaStreamCreateWithPriority

• cudaStreamSynchronize

• cudaStreamDestroy

• cudaMemcpy

• cudaMemcpyAsync

• cudaDeviceReset

• cudaDeviceSynchronize

16.3. pthread 83



Extrae Documentation, Release 4.2.13

The CUDA accelerators do not have memory for the tracing buffers, so the tracing buffer resides in the host side.

Typically, the CUDA tracing buffer is flushed at cudaThreadSynchronize, cudaStreamSynchronize
and cudaMemcpy calls, so it is possible that the tracing buffer for the device gets filled if no calls to this routines
are executed.

These are the instrumented OpenACC routines in the Extrae package:

• OACC_init

• OACC_compute

• OACC_data

• OACC_data_alloc

• OACC_data_update

• OACC_launch

• OACC_update

• OACC_wait

16.5 OpenCL

These are the instrumented OpenCL routines in the Extrae package:

• clBuildProgram

• clCompileProgram

• clCreateBuffer

• clCreateCommandQueue

• clCreateContext

• clCreateContextFromType

• clCreateKernel

• clCreateKernelsInProgram

• clCreateProgramWithBinary

• clCreateProgramWithBuiltInKernels

• clCreateProgramWithSource

• clCreateSubBuffer

• clEnqueueBarrierWithWaitList

• clEnqueueBarrier

• clEnqueueCopyBuffer

• clEnqueueCopyBufferRect

• clEnqueueFillBuffer

• clEnqueueMarkerWithWaitList

• clEnqueueMarker

• clEnqueueMapBuffer

• clEnqueueMigrateMemObjects

• clEnqueueNativeKernel

• clEnqueueNDRangeKernel

84 Chapter 16. Instrumented routines



Extrae Documentation, Release 4.2.13

• clEnqueueReadBuffer

• clEnqueueReadBufferRect

• clEnqueueTask

• clEnqueueUnmapMemObject

• clEnqueueWriteBuffer

• clEnqueueWriteBufferRect

• clFinish

• clFlush

• clLinkProgram

• clSetKernelArg

• clWaitForEvents

• clRetainCommandQueue

• clReleaseCommandQueue

• clRetainContext

• clReleaseContext

• clRetainDevice

• clReleaseDevice

• clRetainEvent

• clReleaseEvent

• clRetainKernel

• clReleaseKernel

• clRetainMemObject

• clReleaseMemObject

• clRetainProgram

• clReleaseProgram

The OpenCL accelerators have small amounts of memory, so the tracing buffer resides in the host side.

Typically, the accelerator tracing buffer is flushed at each cl_Finish call, so it is possible that the tracing buffer
for the accelerator gets filled if no calls to this routine are executed.

However if the operated OpenCL command queue is tagged as not Out-of-Order, then flushes will also happen
at clEnqueueReadBuffer, clEnqueueReadBufferRect and clEnqueueMapBuffer if their corre-
sponding blocking parameter is set to true.

16.5. OpenCL 85



Extrae Documentation, Release 4.2.13

86 Chapter 16. Instrumented routines



CHAPTER

SEVENTEEN

SEE ALSO

mpi2prv(1)

extrae_event(3), extrae_counters(3), extrae_eventandcounters(3),
extrae_shutdown(3), extrae_restart(3), extrae_set_tracing_tasks(3),
extrae_set_options(3),

87



Extrae Documentation, Release 4.2.13

88 Chapter 17. SEE ALSO



INDEX

Symbols
–enable-doc

command line option, 8
–enable-instrument-dynamic-memory

command line option, 7
–enable-merge-in-trace

command line option, 7
–enable-nanos

command line option, 8
–enable-online

command line option, 8
–enable-openmp

command line option, 7
–enable-openmp-gnu

command line option, 7
–enable-openmp-ibm

command line option, 8
–enable-openmp-intel

command line option, 7
–enable-openmp-ompt

command line option, 8
–enable-parallel-merge

command line option, 7
–enable-pmapi

command line option, 7
–enable-posix-clock

command line option, 7
–enable-pthread

command line option, 8
–enable-sampling

command line option, 7
–enable-single-mpi-lib

command line option, 7
–enable-smpss

command line option, 8
–enable-xml

command line option, 8
–enable-xmltest

command line option, 8
–prefix=<PATH>

command line option, 8
–with-bfd=<PATH>

command line option, 8
–with-binary-type=<32|64|default>

command line option, 8
–with-binutils=<PATH>

command line option, 8
–with-boost=<PATH>

command line option, 8
–with-clustering=<PATH>

command line option, 8
–with-cuda=<PATH>

command line option, 9
–with-cupti=<PATH>

command line option, 9
–with-dyninst=<PATH>

command line option, 9
–with-fft=<PATH>

command line option, 9
–with-java-aspectj-weaver=<path/to/aspectjweaver.jar>

command line option, 9
–with-java-aspectj=<PATH>

command line option, 9
–with-java-jdk=<PATH>

command line option, 9
–with-liberty=<PATH>

command line option, 9
–with-mpi-name-mangling=<0u|1u|2u|upcase|auto>

command line option, 9
–with-mpi=<PATH>

command line option, 9
–with-openacc=<PATH>

command line option, 9
–with-opencl=<PATH>

command line option, 9
–with-openshmem=<PATH>

command line option, 10
–with-papi=<PATH>

command line option, 10
–with-spectral=<PATH>

command line option, 10
–with-synapse=<PATH>

command line option, 9
–with-unwind=<PATH>

command line option, 10
-block

command line option, 41
-consecutive-size

command line option, 42
-cyclic

command line option, 41
-d, -dump

89



Extrae Documentation, Release 4.2.13

command line option, 40
-dump-without-time

command line option, 40
-e <BINARY>

command line option, 40
-emit-library-events

command line option, 40
-evtnum <N>

command line option, 40, 42
-f <FILE.mpits>

command line option, 40, 42
-f-absolute <FILE.mpits>

command line option, 40, 42
-f-relative <FILE.mpits>

command line option, 40, 42
-h

command line option, 40, 42
-keep-mpits, -no-keep-mpits

command line option, 40
-maxmem <M>

command line option, 40, 42
-o <FILE.dim>

command line option, 42
-o <FILE.prv[.gz]>

command line option, 40
-remove-files

command line option, 41
-s <FILE.sym>

command line option, 40
-size

command line option, 41
-skip-sendrecv

command line option, 41
-sort-addresses

command line option, 41
-split-states

command line option, 41
-stop-at-percentage

command line option, 41
-syn-apps

command line option, 41
-syn-by-node

command line option, 41
-syn-by-task

command line option, 41
-trace-overwrite, -no-trace-overwrite

command line option, 41
-translate-addresses, -no-translate-addresses

command line option, 41
-translate-data-addresses, -no-translate-data-addresses

command line option, 41
-tree-fan-out <N>

command line option, 42
-unique-caller-id

command line option, 41
-use-disk-for-comms

command line option, 42

C
cha:EnvVars, 21
command line option

–enable-doc, 8
–enable-instrument-dynamic-memory, 7
–enable-merge-in-trace, 7
–enable-nanos, 8
–enable-online, 8
–enable-openmp, 7
–enable-openmp-gnu, 7
–enable-openmp-ibm, 8
–enable-openmp-intel, 7
–enable-openmp-ompt, 8
–enable-parallel-merge, 7
–enable-pmapi, 7
–enable-posix-clock, 7
–enable-pthread, 8
–enable-sampling, 7
–enable-single-mpi-lib, 7
–enable-smpss, 8
–enable-xml, 8
–enable-xmltest, 8
–prefix=<PATH>, 8
–with-bfd=<PATH>, 8
–with-binary-type=<32|64|default>, 8
–with-binutils=<PATH>, 8
–with-boost=<PATH>, 8
–with-clustering=<PATH>, 8
–with-cuda=<PATH>, 9
–with-cupti=<PATH>, 9
–with-dyninst=<PATH>, 9
–with-fft=<PATH>, 9
–with-java-aspectj-

weaver=<path/to/aspectjweaver.jar>, 9
–with-java-aspectj=<PATH>, 9
–with-java-jdk=<PATH>, 9
–with-liberty=<PATH>, 9
–with-mpi-name-mangling=<0u|1u|2u|upcase|auto>,

9
–with-mpi=<PATH>, 9
–with-openacc=<PATH>, 9
–with-opencl=<PATH>, 9
–with-openshmem=<PATH>, 10
–with-papi=<PATH>, 10
–with-spectral=<PATH>, 10
–with-synapse=<PATH>, 9
–with-unwind=<PATH>, 10
-block, 41
-consecutive-size, 42
-cyclic, 41
-d, -dump, 40
-dump-without-time, 40
-e <BINARY>, 40
-emit-library-events, 40
-evtnum <N>, 40, 42
-f <FILE.mpits>, 40, 42
-f-absolute <FILE.mpits>, 40, 42
-f-relative <FILE.mpits>, 40, 42

90 Index



Extrae Documentation, Release 4.2.13

-h, 40, 42
-keep-mpits, -no-keep-mpits, 40
-maxmem <M>, 40, 42
-o <FILE.dim>, 42
-o <FILE.prv[.gz]>, 40
-remove-files, 41
-s <FILE.sym>, 40
-size, 41
-skip-sendrecv, 41
-sort-addresses, 41
-split-states, 41
-stop-at-percentage, 41
-syn-apps, 41
-syn-by-node, 41
-syn-by-task, 41
-trace-overwrite, -no-trace-overwrite, 41
-translate-addresses, -no-translate-addresses, 41
-translate-data-addresses, -no-translate-data-

addresses, 41
-tree-fan-out <N>, 42
-unique-caller-id, 41
-use-disk-for-comms, 42
no-syn, 41

E
environment variable

cha:EnvVars, 21
EXTRAE_BUFFER_SIZE, 25, 57
EXTRAE_BURST_THRESHOLD, 27, 58
EXTRAE_CONFIG_FILE, 2, 19, 38, 49, 57
EXTRAE_CONTROL_FILE, 26, 57
EXTRAE_CONTROL_GLOPS, 26, 57
EXTRAE_CONTROL_TIME, 26, 57
EXTRAE_COUNTERS, 23, 57
EXTRAE_DIR, 25, 57
EXTRAE_DISABLE_MPI, 20, 57
EXTRAE_DISABLE_OMP, 21, 57
EXTRAE_DISABLE_PTHREAD, 20, 57
EXTRAE_FILE_SIZE, 25, 57
EXTRAE_FINAL_DIR, 25, 57
EXTRAE_FUNCTIONS, 23, 57
EXTRAE_FUNCTIONS_COUNTERS_ON, 57
EXTRAE_GATHER_MPITS, 25, 58
EXTRAE_HOME, 1, 20, 49, 51, 53, 58
EXTRAE_INITIAL_MODE, 20, 26, 58
EXTRAE_LABELS, 43
EXTRAE_MAX_MPI_HANDLES, 58
EXTRAE_MINIMUM_TIME, 58
EXTRAE_MPI_CALLER, 21, 58
EXTRAE_MPI_COUNTERS_ON, 20, 58
EXTRAE_MPI_STATISTICS, 27, 58
EXTRAE_NETWORK_COUNTERS, 23, 58
EXTRAE_OMP_COUNTERS_ON, 21, 58
EXTRAE_OMP_LOCKS, 21, 58
EXTRAE_ON, 20, 38, 58
EXTRAE_PROGRAM_NAME, 25, 58
EXTRAE_PTHREAD_COUNTERS_ON, 58
EXTRAE_PTHREAD_LOCKS, 21, 58

EXTRAE_RUSAGE, 23, 59
EXTRAE_SAMPLING_CALLER, 27, 58
EXTRAE_SAMPLING_CLOCKTYPE, 27, 58
EXTRAE_SAMPLING_PERIOD, 27, 58
EXTRAE_SAMPLING_VARIABILITY, 27, 59
EXTRAE_SKIP_AUTO_LIBRARY_INITIALIZE,

59
EXTRAE_TRACE_TYPE, 20, 59
LD_PRELOAD, 50, 53, 54, 61, 70, 81
LDR_PRELOAD, 52
LDR_PRELOAD64, 52, 53
LDR_PRELOAD[64], 50
MPI2DIM_TMP_DIR, 43
MPI2PRV_TMP_DIR, 43
OBJECT_MODE, 68
OMP_NUM_THREADS, 2
PNMPI_CONF, 61

EXTRAE_BUFFER_SIZE, 25
EXTRAE_BURST_THRESHOLD, 27
EXTRAE_CONFIG_FILE, 2, 19, 38, 49, 57
EXTRAE_CONTROL_FILE, 26, 57
EXTRAE_CONTROL_GLOPS, 26
EXTRAE_CONTROL_TIME, 26
EXTRAE_COUNTERS, 23
EXTRAE_DIR, 25
EXTRAE_DISABLE_MPI, 20
EXTRAE_DISABLE_OMP, 21
EXTRAE_DISABLE_PTHREAD, 20
EXTRAE_FILE_SIZE, 25
EXTRAE_FINAL_DIR, 25
EXTRAE_FUNCTIONS, 23
EXTRAE_GATHER_MPITS, 25
EXTRAE_HOME, 1, 20, 49, 51, 53
EXTRAE_INITIAL_MODE, 20, 26
EXTRAE_MPI_CALLER, 21
EXTRAE_MPI_COUNTERS_ON, 20
EXTRAE_MPI_STATISTICS, 27
EXTRAE_NETWORK_COUNTERS, 23
EXTRAE_OMP_COUNTERS_ON, 21
EXTRAE_OMP_LOCKS, 21
EXTRAE_ON, 20, 38
EXTRAE_PROGRAM_NAME, 25
EXTRAE_PTHREAD_LOCKS, 21
EXTRAE_RUSAGE, 23
EXTRAE_SAMPLING_CALLER, 27
EXTRAE_SAMPLING_CLOCKTYPE, 27
EXTRAE_SAMPLING_PERIOD, 27
EXTRAE_SAMPLING_VARIABILITY, 27
EXTRAE_TRACE_TYPE, 20

L
LD_PRELOAD, 50, 53, 54, 61, 70, 81
LDR_PRELOAD, 52
LDR_PRELOAD64, 52, 53
LDR_PRELOAD[64], 50

N
no-syn

Index 91



Extrae Documentation, Release 4.2.13

command line option, 41

O
OBJECT_MODE, 68
OMP_NUM_THREADS, 2

P
PNMPI_CONF, 61

92 Index


	Quick start guide
	The instrumentation package
	Quick running
	Quick merging the intermediate traces

	Introduction
	What is the Paraver tool?
	Where can the Paraver tool be found?

	Configuration, build and installation
	Configuration of the instrumentation package
	Build
	Check
	Installation
	Examples of configuration on different machines

	Extrae XML configuration file
	XML Section: Trace configuration
	XML Section: MPI
	XML Section: pthread
	XML Section: OpenMP
	XML Section: Callers
	XML Section: User functions
	XML Section: Performance counters
	XML Section: Storage management
	XML Section: Buffer management
	XML Section: Trace control
	XML Section: Bursts
	XML Section: Others
	XML Section: Sampling
	XML Section: CUDA
	XML Section: OpenACC
	XML Section: OpenCL
	XML Section: Input/Output
	XML Section: Dynamic memory
	XML Section: Memory references through Intel PEBS sampling
	XML Section: Executing CPU identification
	XML Section: Merge
	Using environment variables within the XML file

	Extrae API
	Basic API
	Extended API
	Java bindings
	Command-line version

	Merging process
	Paraver Merger
	Dimemas merger
	Environment variables

	Extrae On-line User Guide
	Introduction
	Automatic analysis
	Structure detection
	Periodicity detection
	Multi-experiment analysis
	Configuration

	Examples
	DynInst based examples
	LD_PRELOAD based examples
	Statically linked based examples
	Generating the final tracefile

	An example of Extrae XML configuration file
	Environment variables
	Running Extrae on top of PnMPI
	Introduction
	Instructions to run with PnMPI

	Regression tests
	Overhead
	Frequently Asked Questions
	Configure, compile and link FAQ
	Execution FAQ
	Performance monitoring counters FAQ
	Merging traces FAQ

	Submitting a bug report
	Reporting a compilation issue
	Reporting an execution issue

	Instrumented routines
	MPI
	OpenMP
	pthread
	CUDA
	OpenCL

	SEE ALSO
	Index

