Paraver

Version 3.0

Parallel Program Visualization
and Analysis tool

TRACEFILE DESCRIPTION

June 2001

Vi

CEPBA

Contents

1 Introduction

2 Paraver Object Model
2.1 Paraver Process Model e
2.2 Paraver Resouce Model

3 Paraver Trace file
3.1 ASCII Trace Format i e

3.1.1 Paravertrace header e
3.1.2 Paravertracebody L
3.1.3 Paravertrace order e e e e e e e e e e e
314 Traceexamples e

4 Configuration files
4.1 Paraver Configuration File (.pcf) Lo oL
4.1.1 When are Paraver Configuration Filesloaded ?
4.1.2 Paraver Configuration File format.
4.2 Names Configuration File (.row)

ii

CONTENTS

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6

Paraver Configuration File 4
Paraver object model L L L 7
Paraver process model L e e e 8
Hierarchical composition of levels 9
Mapping of the MPI programming model 10
Mapping of the OpenMP+MPI programming model 10
Paraver resource model L e e e 11
Hierarchical composition of levels 11
Paraver record types L. 13
ASCII trace structure o i i i e e e e e 15
Header format e 15
Object structure L L 16
Header Example e 16
Thread view vs. processor view. State record 17
Erroneus overlaped trace. e 18
COrrect trace. v v v e 19
Thread view vs. processor view. Event record 21
PARAVER_CONFIG_FILE environment variable 23
Default options section 25
Default semantic section L e 26
Default filter section e e 27
Default microscope section L. 27
Default microscope section. L. e e 29

ii

LIST OF FIGURES

Chapter 1

Introduction

Paraver is a flexible parallel program visualization and analysis tool based on an easy-to-use Motif
GUI. Paraver was developed responding to the basic need of having a qualitative global perception
of the application behaviour by visual inspection and then to be able to focus on the detailed
quantitative analysis of the problems. Paraver provides a large amount of information on the
behaviour of an application. This information directly improves the decisions on whether and
where to invert the programming effort to optimize an application. The result is a reduction of
the development time as well as the minimization of the hardware resources required for it.
Some Paraver features are the support for :

Detailed quantitative analysis of program performance

e Concurrent comparative analysis of multiple traces

Fast analysis of very large traces

Mixed support for message passing and shared memory (networks of SMPs)

Easy personalization of the semantics of the visualized information

One of the main features of Paraver is the flexibility to represent traces coming from different
environments. Traces are composed of state transitions, events and communications with an
associated timestamp. These three elements can be used to build traces that capture the behaviour
along time of very different kinds of systems. The Paraver distribution includes, either in its own
distribution or as an additional package, the following trace generators:

1. Sequential application tracing: it is included in the Paraver distribution. It can be used to
trace the value of certain variables, procedure invocations, ... in a sequential program.

2. Parallel application tracing: a set of modules are optionally available to capture the activity
of parallel applications using shared—memory (OpenMP directives), message—passing (MPI
library) paradigms, or a combination of them.

3. System activity tracing in a multiprogrammed environment: an application to trace processor
allocations and migrations is optionally available in the Paraver distribution.

This document includes a detailed description of the Paraver programming model and trace
format. This allows Paraver users to develop their own tracing facilities according to their own
interests and requirements. The possibilities offered by the visualization, semantic and quantitative
analyzer modules are powerful enough allowing users to analyze and understand the behaviour
of the traced system. Paraver also allows the customization of some of its parts as well as the
plug—in of new functionalities.

So expressive power, flexibility and the capability of efficiently handling large traces are key
features addressed in the design of Paraver. The clear and modular structure of Paraver plays a

1

2 CHAPTER 1. INTRODUCTION

significant role towards achieving these targets. Let us briefly describe the key design philosophy
behind these points.

Views

Paraver offers a minimal set of views on a trace. The philosophy behind the design was that
different types of views should be supported if they provide qualitatively different analysis types
of information. Frequently, visualization tools tend to offer many different views of the parallel
program behaviour. Nevertheless, it is often the case that only a few of them are actually used by
users. The other views are too complex, too specific or not adapted to the user needs.

Paraver differentiates three types of views :

e Graphic view : to represent the behaviour of the application along time in a way that easily
conveys to the user a general understanding of the application behaviour. It should also
support detailed analysis by the user such as pattern identification, causality relationships,

e Textual view : to provide the utmost detail of the information displayed.

e Analysis view: to provide quantitative data.

The Graphic View is flexible enough to visually represent a large amount of information
and to be the reference for the quantitative analysis. The Paraver view consists of a time diagram
with one line for each represented object. The types of objects displayed by Paraver are closely
related to the parallel programming model concepts and to the execution resources (processors).
In the first group, the objects considered are : application (Ptask in Paraver terminology), task
and thread. Although Paraver is normally used to visualize a single application, it can display the
concurrent execution of several applications, each of them consisting of several tasks with multiple
threads.

The information in the graphics view consists of three elements : a time dependent value
for each represented object, flags that correspond to puntual events within a represented object,
and communication lines that relate the displayed objects. The visualization control module
determines how each of these elements are displayed. The essential choices are :

e Time dependent value : displayed as a function of time or encoded in color. Furthermore,
time and magnitude scale can be changed to zoom the visualization.

e Flags : displayed or not and color.

e Communication : displayed or not.

The visualization module blindly represents the values and events passed to it, without assign-
ing to them any pre-conceived semantics. This plays a key role in the flexibility of the tool. The
semantics of the displayed information (activity of a thread, cache misses, sequence of functions
called,...) lies in the mind of the user. Paraver specifies a trace format but no actual semantics
for the encoded values. What it offers is a set of building blocks (semantic module) to process the
trace before the visualization process. Depending on how you generate the trace and combine the
building blocks, you can get a huge number of different semantic magnitudes.

Expressive power

The separation between the visualization module which controls how to display data and the
semantic module which determines the value visualized offers a flexibility and expressive above
than frequently encountered in other tools.

Paraver semantic module is structured as a hierarchy of functions which are composed to
compute the value passed to the visualization module. Each level of function corresponds to the

hierarchical structure of the process model on which Paraver relies. For example: when displaying
threads, a thread function computes from the records that describe the thread activity, the value to
be passed for visualization; when displaying tasks, the thread function is applied to all the threads
of the task and a task function is used to reduce those values to the one which represents the task;
when displaying processors, a processor function is applied to all the threads that correspond to
tasks allocated to that processor.

Many visualization tools include a filtering module to reduce the amount of displayed informa-
tion. In Paraver, the filtering module is in front of the semantic one. The result is added flexibility
in the generation of the value returned by the semantic module.

Combining very simple semantic functions (sum, sign, trace_value_ass,....), at each level, a
tremendous expressive power results. Besides the typical processor time diagram, it is for example
possible to display:

e The global parallelism profile of the application.

The total per CPU consumption when several tasks share a node.

e Average ready queue length of ready tasks when several tasks share a node.

The instantaneous communication load geometrically averaged over a given time.

e The evolution of the value of a selected variable, ...

The default filtering and semantic function setting of the tool results in the same type of
functionality of many other visualization tools. A much higher semantic potential can be obtained
with limited training.

Direct and Derived metrics

Paraver offers a very flexible mechanism to compute and display a large number of performance
indices and derived metrics from the trace.

There is a first level of semantic functions which obtain the values in function of time directly
from the records in the trace. A second level of semantic functions can be obtained by combining
(add, divide, ...) the functions of time computed by the first level.

For example, starting with a window that looks at the cycles counter and another window that
looks at the instructions counter, it is possible to apply the second level of semantic functions
in order to obtain a derived metric like Instructions per Cycle by dividing those two windows.
Although the trace doesn’t contain any counter about IPC, it could be computed from the cycles
counter and instructions counter.

Quantitative analysis

Global qualitative display of application behaviour is not sufficient to draw conclusions on where
the problems are or how to improve the code. Detailed numbers are needed to sustain what
otherwise are subjective impressions.

The quantitative analysis module of Paraver offers the possibility to obtain information on the
user selected section of the visualized application and includes issues such as being able to measure
times, count events, compute the average value of the displayed magnitude,...

The quantitative analysis functions are also applied after the semantic module in the same way
as the visualization module. Again here, very simple functions (average, count,) at this level
combined with the power of the semantic module result in a large variety of supported measures.
Some examples are:

e Precise time between two events (even if they are very distant)

e Number of messages sent between time X and Y

4 CHAPTER 1. INTRODUCTION

e Number of messages of tag T exchanged between processor P1 and P2 between time X and
Y

Average CPU utilization between time X and Y

Number of events of type V on processor W between time X and Y

Average CPU time between two communications

Multiple traces

In order to support comparative analyses, simultaneous visualization of several traces is needed.
Paraver can concurrently display multiple traces, making possible to use the same scales and
synchronized animation in several windows.

This multi-trace feature supports detailed comparisons between:

e Two versions of a code

¢ Behavior on two machines

e Difference between two runs
e Influence of problem size

Comparisons which otherwise are very subjective or cumbersome.

Customization

Developing a tool which fulfills the needs of every user is rather impossible. Initially Paraver aimed
at supporting the projects carried out at CEPBA as part of our research and service activities.
One objective of the design was to provide some support for expert users having new needs and
willing to extend the functionalities of Paraver. For this purpose, Paraver is distributed with the
possibility of personalizing the two modules that provide the expressive and analysis power.

Sta Calors

: T e T
Defined States Giobalvindow — g =

Bl cote v raiont
Thread Semantic Function: Given State e [% Code v Gradent | Gradiento]
read SemanieFuncion - Given St Change the colors table : I Change ol | [EOUPRIEEIT
Coor_siate_Latel o .
T ET— E - number of colors 2Not created [| (GO B |
9 T e “ JorassiomPiosks |
Sl b e I - label
e — |
4 - -RGB values I—
S Tha. Synchr
Bl ° Teswatwatan d [|
- — J 7 Setea ana Foricson | | B2 Loradent 7iard Countes |
= L7 Scheat and Forcson ||| FFRR
et Al tates| Unset Al states JLLLC T— Copy coors | RN
EECETETI e — |
o
10 medisteSena [EEERR—
1 et Recee |
1200
13 Group Conmunitiy |
14 Tracing Disablad ™ |/
—
Specify each row name
for each object/level.
Tne | s
REDRAW | 1= comn recy i sens rin oo 44) 4]] M B M|
Events winiow
Defined Event Types/Values
Color_ Typa _Lanel Valuo Label Specify textual values to user events:
S wnny Lo one) © [Saooon0s i computeme 11 f L .
3 B000000B Sched. Lock (OMF) 63000010 _mpdo_compute_rns_2 -spec|fy its grad|ent color
2 so0oootsJoi (W) 63000011 oo compute_s_s O
43000012 _npclo_conpute_is_4 J - specify its textual value/label
3 1000000 Fe 55 010055100) J S3000015 e solve_1 e
ER (ackres 10055160 53000014 Zmpo_y_solve_1 i - specify its values
-

Figure 1.1: Paraver Configuration File

A procedural interface is provided in such a way that a user can, with a limited effort, link
into its Paraver version the actual functionality needed. Taking into account the built in semantic

functions and analysis functions and their relation to the hierarchical process model and the
possibility of combining them in a totally orthogonal way at each level, a user can obtain a large
number of new semantics by developing very simple modules.

Another aspect where the users may have personal preferences is in setting color tables. More
important is the possibility to specify the textual values associated with the values encoded in the
trace. All this is achieved through a simple but powerful configuration file (see Appendix 4).

Configuration files are simple, but very useful files which lets to the user customize his/her
environment, save/restore a session, ... Also, we can change some default options and redefine the
environment.

It is important to know and use these files because they make easier the day work with Paraver.

Large traces

A requirement for Paraver was that the whole operation of the tool has to be very fast in order
to make it usable and capable to maintain the developer interest. Handling traces in the range
of tenths to hundreds of MB is an important objective of Paraver (see chapter 3 Paraver Trace
file).

Easy window dimensioning, forward and backward animation, zooming are supported. Several
windows with different scales can be displayed simultaneously supporting global qualitative refer-
ences and detailed analysis. Even on very large traces, the quantitative analysis can be carried
out with great precision because the starting and end points of the analysis can be selected on
different windows.

Chapter 2

Paraver Object Model

As described in the introduction, Paraver functionality is tightly coupled with the hierarchical
object model targeted by the DiP environment. Paraver works with two ortogonal object models:

e The process model is composed by the objects that correspond to the three levels of the
most frequently programming models: application, process and thread objects.

e The resource model represents the physical resources where the different threads are fi-
nally executed. The resource objects are tightly connected with the cluster of SMPs where

applications has been executed: processor and node.

WORKLOAD

Application (APPL) Application (APPL)

TASK

TASK

TASK

‘AS K

SYSTEM |

e

Aows N
Kowa
Aows N

S

Figure 2.1: Paraver object model

To exploit all the object model levels, the tools that generates trace files for Paraver must
be capable to get the process and resource information. Both shared and distributed memory

7

8 CHAPTER 2. PARAVER OBJECT MODEL
applications could be mapped on the Paraver object model.

Object Model flexibility

The Paraver Process and Resource models define the structure of two ortogonal type of objects
for which performance indices can be computed and displayed. The actual names used for those
objects derive from the standard parallel programing terminology. Nevertheless. Paraver does not
assume any semantics beyond the hierarchical structure of the objects. It is possible for any user
to implement instrumentation or simulation tools that map other concepts onto the thread, cpu,
task, ... names. For example, the resources model could be used to represent functional units and
threads could represent instruction flow. Features such as the behaviour of cluster arquithectures
could be easely displayed.

2.1 Paraver Process Model

This process model is a superset of the most frequently used programming models. On a Paraver
window, the type of process model object to be represented can be selected among:

e Set of applications (WORKLOAD)
e Application (APPL)

e TASK

¢ THREAD

A parallel application (APPL level) is composed by a set of sequential or parallel processes
(named as TASK in paraver process model hierarchy). The parallel processes are composed by
more than one thread while the sequential processes are mapped into one thread. The top of
the process model hierarchy is the WORKLOAD level representing a set of different applications
running on the same resources.

WORKLOAD

Application (APPL) Application (APPL

TASK

Figure 2.2: Paraver process model

This model is very flexible, and can be easily mapped to the models supported by actual
communication or multi-threaded libraries.

A thread type window will display one line for each selected thread. Paraver supports several
applications concurrently running on the same system thus, on an application type window, one
line will be displayed for each application.

2.1. PARAVER PROCESS MODEL 9

In the three-level process model an application can have one or several tasks, and each task can
have one or several threads. Tasks do not share address space, thus communication between them
is only done through message passing. The different threads within a task are executed within the
address space defined by the task. Threads within a task can thus communicate and synchronize
through shared memory.

The value represented on a line of a given type is computed from the records in the trace by
the hierarchical composition of functions corresponding to each one of the levels in the model (see
figure 2.3). Top levels semantic functions return a value based on the semantic values returned by
the bottom levels. For example, the semantic value returned for TASK level is computed based
on the semantic values of the threads of the task.

SEMANTIC VALUE
of Process Model

WORKLOAD_func

Figure 2.3: Hierarchical composition of levels
Shared and distributed memory programming models can be mapped onto the Paraver process
model. For example, we can map the MPI programming model, the PVM programming model,
the OpenMP programming model, combined MPI and OpenMP programming models, ...

Example 1: Mapping the MPI programming model.

The mapping of the MPI programming model onto the Paraver process model can be done as
follows :

e cach MPI process is a Paraver TASK with one Paraver THREAD

e the whole MPI application is the Paraver APPL (application object), grouping all MPI
processes.

This mapping lets to have in a tracefile the execution of different MPT applications at the same
time.

The PVM programming model can be mapped like the MPI programming model. Each
PVM process will be a Paraver TASK.

Example 2: Mapping the combined OpenMP-+MPI programming model.

The combined OpenMP+MPI programming model could be seen as a MPI application where each
MPT process is composed by a set of threads which work in parallel. The mapping that could be
done is a combined mapping between the two programming models :

e cach OpenMP thread is mapped on one Paraver THREAD

e cach MPI process composed of multiple OpenMP threads is a Paraver TASK

10 CHAPTER 2. PARAVER OBJECT MODEL

MPI Application (APPL level)

MPI process
(rank 1)

MPI process
(rank 2)

Figure 2.4: Mapping of the MPI programming model

MPI process
(rank 0)

e the whole OpenMP+MPI application is the Paraver APPL (application object).
As in the previous example, we can have a trace with different applications.

OpenMP+MPI Application (APPL level)

MPI process
(rank 1)

MPI process
(rank O

Figure 2.5: Mapping of the OpenMP+MPI programming model

2.2 Paraver Resouce Model

The resource model represents the resources where the applications are executed. On a Paraver
window, the type of resource object to be represented can be selected among;:

o Cluster of nodes (SYSTEM)
e NODE (set of processors)
e Processor (CPU)

The processors are the resources where the threads are executed. Processors are grouped in
nodes. A task is mapped into a node and thus all its threads share their processors in that node.

The mapping is not necessarily one to one, so it is possible to have several tasks from a single
application on a given node. Tasks from different applications can also be mapped into the same
node.

Different resource models can be mapped onto the Paraver resource model. For example, a
uniprocessor machine could be represented by a single node composed by one processor. A single
shared memory multiprocessor with four processors could be represented as one node composed
by four processors. A distributed shared memory could be represented by different nodes could
be mapped by more than mode composed by different processors. At the top, the system level
has been added in order to represent a set of SMP clusters.

For a processor type window, the valued displayed is the value returned by the thread funtion
that is executing in that moment.

2.2. PARAVER RESOUCE MODEL 11

,,,

SYSTEM | NopE NODE NODE
| [0 () @ |
i — g — g I— g !
| : e 1B
Figure 2.6: Paraver resource model
SEMANTIC VALUE
of Resource Model
@:‘ — .@(— Ean
ST SThf STt SThoe s Thof i Thof STt ITh o CThE

Figure 2.7: Hierarchical composition of levels

The semantic function for one node is computed based on the semantic values of the processors
of that node. Typical combinations are addition, average, maximum, New processor semantic
functions such as Active Thread or Active Thread Value have been developed that support new
types of analyses. These functions return the identifier or value respectively of the thread
running on the processor at the moment.

12

CHAPTER 2. PARAVER OBJECT MODEL

Chapter 3

Paraver Trace file

The trace file contains records which describe absolute times when events or activities take place
during the execution of the parallel code. Each record represents an event or activity associated
to one thread in the system. Furthermore, trace files have associated some other files to configure
some aspects of the environment: number of states, color and state labels, user event labels, row
labels ...

The three basic types of records defined in Paraver are :

Event

THREAD 1.1.1

THREAD 1.2.1

Conmmuni cati on

Figure 3.1: Paraver record types

State records represent intervals of actual thread status or resource consumption.

Event records represent punctual events in the code. These events are often used to mark the
entry and exit of routines or code blocks. They can also be used to flag changes in variable
values. Event records include a Type and a Value.

Communication records represent the logical and physical communication between the sender
and the receiver in a single point to point communication. Logical communications corre-
spond to the send/receive primitive invocations by the user program. Physical communica-
tion corresponds to the actual message transfer on the communication network.

An important issue in the tracing implementation must be precision and accuracy in the mea-
surement. By default, the trace file works with microsecond precision and to take benefit of it, the
tracing tools should be capable to get the events and activities at microsecond presicion. However,
if tracing tool works with lower presicion (like nanoseconds or cycles), they also could be assigned
taking in mind that lowest units when working inside Paraver will be that ones (even though unit
labels could be changed).

A Paraver trace could be composed by three files :

13

14 CHAPTER 3. PARAVER TRACE FILE

e the ASCII trace file which defines the objects structure and contains the list of all the
trace records (states, events and communications). The ASCII trace file name usually ends
using the extension .prv.

e the Paraver Configuration File which defines the labels and colors associated to states
and events. When a trace is loaded, if there is a file named like ASCII trace name but with
the .pcf extension instead of .prv, Paraver loads it automatically.

e the Names Configuration File which defines the row labels that will be used instead
default ones. By default, each row label is composed by the level and its object identifiers
(for example, the row labels when working at thread level are composed by the application
identifier, the task identifier within the application and the thread identifier within the task
i.e. THREAD 1.2.3). This file lets to define user row labels. The user could define the label
NAS LU MASTER instead of label THREAD 1.1.1. When a trace is loaded, if there is a
file named like the trace file but with the .row extension instead of .prv, Paraver loads it
automatically.

Although, Paraver and Names Configuration files are optional, we mainly recomend to use it,
specially the Paraver Configuration File which defines labels and colors to states an events. Tracing
tools should generate them together with the trace file.

The rest of the chapter will describe the ASCII trace format and some important features that
tools must take in mind when generating trace files. Later, the chapter 4 on page 23 will describe
the two configuration files that should be generated together with the trace file.

3.1 ASCII Trace Format

The ASCII trace format is composed by a header and a body (see figure 3.2). The header describes
the process and resource model objects and the body contains the ordered list of records.

3.1.1 Paraver trace header

The trace header defines the process and the resource model of the tracefile. It contains the infor-
mation about the number of applications of the tracefile, the number of tasks for each application
and the number of threads in each task. Furthemore, the header defines the number of nodes and
its number of processors.

The trace header is a line where the different fields define the object structure (fields are
separated by colons). The trace header format is :

e #Paraver (dd/mm/yy at hh:mm): defines the date and hour where trace has been
generated. Is is important to use the symbol # at the beginning of the header line because
it inidicates that it is in ASCII trace format.

e ftime: total trace time in microseconds

e nNodes(nCpusl[,nCpus2,...,nCpusN]): defines the number of nodes and number pro-
cessors per node. After the number of nodes (nNodes), the list of the number of processors
must be specified (nCpus1 is the number of processors on node 1, nCpus2 is the number
of processors on node 2,...).

e nAppl: number of applications in the trace file.

e applicationList : The application list defines the application object structure. Each ap-
plication has its application list (applicationList) separared by a colon. The application list
format is:

nTasks(nThreadsl:node, ... ,nThreadsN:node)

3.1. ASCII TRACE FORMAT 15

ASCII Trace file

#Paraver (22/05/01 at 16:20):1021312:2(16,16):1:2(1:1,1:2) Trace Header
1:1:1:1:1:0:100:4 T

1:2:1:2:1:0:200:4

1:1:1:1:1:100:300:1

1:1:1:1:1:200:500:4
3:1:1:1:1:300:325:2:1:2:1:200:330:10:3000
2:1:1:1:1:300:60000000:1

Trace Body
State records
Event records
Communication records

Figure 3.2: ASCII trace structure

Resource model
I I

#Paraver (dd/mm/yy at hh:mm):ftime:nNodes(nCpus1,...,nCpusN):nAppl:applicationList[:applicationList]

Application description

Figure 3.3: Header format

where nTasks is the number of tasks of the application.The list defines for each task, the
number of threads (nThreads1) and the node where it has been executing (node).

Traces without resource information

Not all tracing tools may be capable to get the resource information during the execution because
system doesn’t give this type of information or the tool doesn’t know how to obtain it.

If the resource object levels are not use, it does not make sense to define it in the trace file
header. To disable the resource levels, a zero number must be used when defining the resource
information. When Paraver loads a trace without resource levels, they are disabled.

#Paraver (dd/mm/yy at hh:mm):ftime:0:nAppl:applicationlList[:applicationList]

Example of a trace file header

We are going to construct the trace header corresponding to the object structure shown in figure
3.4. The tracefile will have two applications that have been executed in a cluster of two SMPs.

e Process model objects: The first application is based on a mixed OpenMP+MPI pro-
gramming model, it is composed by two MPI processes with four OpenMP threads. The
second one is an OpenMP application running with four threads.

16 CHAPTER 3. PARAVER TRACE FILE

MPI1+OpenMP application

MPI Process Rank 0

MPI Process Rank 1
OpenMP application

NODE 1

cpuz @

CPU3 bi

Figure 3.4: Object structure

¢ Resource model objects: The two applications has been executed in a cluster of two
SMPs with four processors.

As we showed in chapter 2, the mapping of the OpenMP+MPI programming model could be
done as follows:

e ecach OpenMP thread is mapped on one Paraver THREAD
e cach MPI process composed of multiple OpenMP threads is a Paraver TASK

e the whole OpenMP+MPI application is the Paraver APPL (application object).

thus, on the process object model, we have one APPL with two TASKs and each of them
composed by four THREADs. The OpenMP programming model could me mapped in one APPL
composed by a single TASK with four THREADs. On the resource object model, we could map
the two clusters on 2 NODEs composed by four CPUs.

The header must describe this objects structure, the process and resource model and should
look like:

#threads

#appl yrasks taskl

appl1 node

Resource model
— appl 2
#Paraver (10/04/01 at 18:30):20125743:2(4,4):2:2(4:2,4:1):1(4:2)
L
appl 1
#nodes

Fbd&

#cpus
node2

Figure 3.5: Header Example

The resource model is defined by :2(4,4):, where the number of nodes and the number of
processors per node is specified.

The object model is defined by :2:2(4:2,4:1):1(4:2). First, it states the number of applications
(:2:), and for each application there is a list that describes its structure (:2(4:2,4:1):1(4:2)).

3.1. ASCII TRACE FORMAT 17

3.1.2 Paraver trace body

The trace body contains an ordered list of records. Paraver trace has three types of records: states,
user events and communications.

The trace records represent state of a thread, an event on a punctual time or communica-
tion (relationship) between a couple of threads. Each of them is identified by a different type.
State records represent an activity associated to one thread in the system that happens in a spe-
cific resource while event records represent an event associated to one thread at a certain time.
Communication rrecords represent relationships between two threads at a certain time.

Since a single trace file may contain several applications, records are tagged with the application
number, the task number within the application where thread belongs and the thread identifier
within the task and the resource identifier (processor number) where it is associated.

All processors from all nodes are numbered by a single global identifier which will identify
the processors from different nodes (figure 3.4 on page 16 shows how processors are numbered).
It is important to node that processors numbering goes from first node to last one. Using this
numbering, we can easely identify the processor identified as 7 in figure 3.4 as the fourth processor
of second node.

State record

State records represent intervals of actual thread status. The first field is the record type identifier
(for state records, type is 1). The next fields identify the resource (cpu-id field) and the object
to which the record belongs (appl.id, task id and thread_id fields). Remember that cpu_id is the
global processor identifier (if no resource levels have been defined the processor identifier must
ever be a zero). Beginning time and ending time of the state record also have to be specified, and
finally, the state field is an integer that encodes the activity carried out by the thread.

l:cpu_id:appl_id:task_id:thread_id:begin_time:end_time:state

If state is not assigned to any processor, its cpu-id should be set to zero. For example, in next
state records :

#Paraver(23/02/01 at 18:57):500:1(2):1:1(1:1)
1:2:1:1:1:0:200:1

0:1:1:1:200:300:1

1:1:1:1:300:500:1

RN

1:
1:

the state value 1 of thread 1.1.1 in first record has been using processor 2 from time 0 to 200,
the second one has not been using any processor from time 200 to 300, and third one has been
using the processor 1 from time 300 to 500.

THREAD 1,1.,1

CPU 1,1

CPU 1,2

IDLE

Il runinG

Figure 3.6: Thread view vs. processor view. State record

Figure 3.6 shows the State As Is visualization of the three state records at thread and cpu level.
Dark blue color corresponds to the state value 1 (by CEPBA-UPC tracing tools it is considered

18 CHAPTER 3. PARAVER TRACE FILE

as running state) while light blue color corresponds to the state value 0 (considered as idle state).
Note that at thread view a long running burst is shown (state value 1) while at the processor view
there is a first burst on processor 2, no bursts at any processor and finally, a burst in processor
1. Although at thread view all time is considered as running state, from time 200 to 300, thread
in figure 3.6 has not been running at any processor (it could be considered that it has been
descheduled)

¢ Important: Not overlap threads on the same processor

Each record represents a thread and the resource where it was performed. The tracing tool
must garantiee that two records will not use the same resource at the same time. It is needed
to obtain a correct trace visualization at resource levels.

To show it, we are going to see an erroneus trace example that overlaps thread states in
the same processor and after, we will show an example of the correct trace that should be
generated.

Our first trace example is composed by two threads sharing the same processor. The Run-
ning state (state value 1) cosumes processor time (its cpu-id is the processor number) and
the Waiting for CPU state (state value 5) doesn’t cosume processor time (its cpu_id is the
zero value).

Trace is:

#Paraver (23/02/01 at 18:57):200:1:1:1(2:1)

1:1:1:1:1:0:75:1
1:0:1:1:2:0:60:5
1:1:1:1:2:60:170:1
1:0:1:1:1:75:150:5
1:1:1:1:1:150:200:1
1:0:1:1:2:170:200:5

Figure 3.7 shows its visualization of the previous trace example. The first window shows the
thread states: dark blue is the Running state (state value 1) and red is the Waiting for CPU
state (state value 5). The second window shows the processor view, the colors displayed
represent the thread identifier that is executing. Here, the dark blue color is the first thread
(value 1) and the white color (value 2) is the second one.

=| Thread view. @ overlap.piv - 0

-

THREAD 1.1.1 B ! 4 . ' B
RUNNING | ! B BLOCKED [NO CPU) I RUNNING |
H | : . H H

|
THREAD 1.1.2

BLOCKED (NG cpu) ! j RUNNING | BLOCKED

— — —

Time 19

=
REDRAW 7 Comi f Recy i Send I Flag 7 Color ﬁl il LI ﬂl ﬁl M

=| Processeor view. Thread IDs @ overlap.piv

THREAD ID 1 (1.1.1) !

Time 19

=
REDRAW 7 Comi f Recy i Send I Flag 7 Color ﬁl il LI ﬂl ﬁl M

ERROR --> TWO THREADS EXECUTING IN THE SAME PROCESSOR AT SAME TIME

Figure 3.7: Erroneus overlaped trace.

Note that Running states are overlapped. Thread 1.1.2 begins to run while thread 1.1.1 is
still executing and later, while thread 1.1.2 is executing, the thread 1.1.1 begins its execution

3.1. ASCII TRACE FORMAT 19

on the processor another time. It will mean that the two threads have been executing at the
same time on the same processor which is incorrect to the processor model defined by Paraver
and sometimes displayed information could be erroneus.

The correct trace should be:

#Paraver (23/02/01 at 18:57):200:1:1:1(2:1)

1:1:1:1:1:0:75:1
1:0:1:1:2:0:75:5
1:0:1:1:1:75:150:5
1:1:1:1:2:75:150:1
1:1:1:1:1:150:200:1
1:0:1:1:2:150:200:5

where no threads overlaps on at the same time the processor. When first thread is desched-
uled, the second begins its Running burst that consumes processor.

Thread view. @ not_overlap.prv -

BLOCKED (NO CPU) | RUNNING |

RUNNING

135

=
|[RERew | = comm 1Recv iSend Flag = coor 44| 4| | w[»p| m|

=| Processor view. Thread 1Ds @ not_overiap.prv

THREAD 1D 1 (1.1 1 THREAD I

Time 153

1
REDRAW | ¥ Comm _(Recy _iSend iFlag I~ Colr 44| 4| »| | po| m|

Figure 3.8: Correct trace.

Figure 3.8 shows the visualization of the previous trace. As with the previous trace, the
first window shows the thread states: dark blue is the Running state (state value 1) and red
is the Waiting for CPU state (state value 5). The second window shows the processor view,
the colors displayed represent the identifier of the running thread. Here, the dark blue color
is the first thread (value 1) and the white color (value 2) is the second one. Note that two
thread Running states aren’t overlapped.

Usually, the different defined states encode the different execution activities. Next table 3.1 shows
the different activities considered by OMPItrace tool (CEPBA-UPC tracing tool used to trace
OpenMP /MPI applications) where thread could be performing during an application execution:

The tracing tools could define their own states meaning, but it is recommended to adjust these
new states to similar defined activities (see for example, the defined states in OMPItrace tool in
table 3.1). For example, synchronizations are usually shown in red, the running state is shown as
dark blue instead of idle state which is shown as light blue, overheads as yellow, ...

Event record

Event records represent punctual events. These user events are often used to mark the entry and
exit of routines or code blocks, hardware counter reads, ... They can also be used to flag changes
in variable values. Event records include a type and a value.

20 CHAPTER 3. PARAVER TRACE FILE
| State id. | Activity description | Label
0 Thread is in an idle loop waiting for more work Idle
1 Running application code Running
2 The thread hasn’t been created yet Not created
3 Thread is waiting a message from another thread Waiting a message
4 Thread is blocked Blocked
5 Thead is is in a synchronization point (getting a lock, barrier, ...) | Thd. Synchr.
6 Thead is doing message passing operations like MPI_Wait,... Wait/WaitAll
7 Thead is doing library code Sched. and Fork/Join
8 Thead is doing message passing operations like MPI_Test, ... Test/Probe
9 Thread is sending a message (blocking send) Blocking Send
10 Thread is sending a message (non-blocking send) Immediate Receive
11 Thread is waiting a message (non-blocking receive) Immediate Receive
12 Thread is doing an I/O operation I/0
13 Thread is doing an global MPI operation Global OP
14 Tracing has been disabled Tracing Disabled

Table 3.1: Example: Some thread activities during an execution

2:cpu_id:appl_id:task_id:thread_id:time:event_type:event_value

The first field is the record type identifier (for event records, type is 2). The next fields identify
the resource (cpu-id field) and the object where record belongs (appl-id, task.id and thread-id
fields). Then, the current absolute time of the event occurrence is specified. Event type and event
value are also specified. The type identifies the event and the value is used to distinguish events
of the same type.

If a zero value is assigned to the cpu.id, the event will not be displayed in resource model views
(cPU,NODE and SYSTEM). For example, in next trace:

#Paraver (23/02/01 at 18:57):500:1(2):1:1(1:1)

1:2:1:1:1:0:100:1
2:2:1:1:1:100:5000:1
1:2:1:1:1:100:200:1
1:0:1:1:1:200:300:1
1:1:1:1:1:300:400:1
2:0:1:1:1:400:5000:0
1:1:1:1:1:400:500:1

the first event cpu-id (type=5000, value=1) has been assigned to number 2 but the second
event cpud (type=5000, value=0) has not been assigned to any processor. Thus, as figure 3.9
shows, the second user event is not displayed at processor view but at thread view it is.

Communication record

Communication records represent the logical and physical communication between the sender and
the receiver in a single point to point communication. Logical communications correspond to the
send/receive primitive invocations by the user program. Physical communication corresponds to
the actual message transfer on the communication network.

3:object_send:1lsend:psend:object_recv:lrecv:precv:size:tag
e object_send: cpu_send. id:ptask_send._id:task_send_id:thread_send_id
e lsend: absolute time indicates when the user wants to send a message

e psend: absolute time indicates when the message is really sent

3.1. ASCITI TRACE FORMAT 21

THREAD 1,4.,4

CPU 1,1

CPU 1,2

IDLE

Il runinG

Figure 3.9: Thread view vs. processor view. Event record

object_recv: cpu_recv_id:ptask recv_id:task recv_id:thread_recv_id

Irecv: absolute time indicates when the user wants to receive a message

e precv: absolute time indicates when the message is really received

e size: integer greater than zero. It represents the size in bytes of the message

tag: integer greater than zero. It is the message type identifier

Communications will not be displayed in resource model views (CPU,NODE and SYSTEM) if a
zero value is assigned to the send and receive cpu.id.

3.1.3 Paraver trace order

rec_type:cpu_id:appl_id:task_id:thread_id:time:...

A Paraver trace file must have a certain order:

1. Ascending order of time (logical send time for communication)

2. Descending order of record type for records with same time. Thus records with same time
must be ordered as: first communication traces (type=3), second event traces (type=2) and
finally the sate traces (type=1).

3.1.4 Trace examples

Trace example (Resource model has not been defined)

Next example shows a bit of the beginning of a real Paraver trace file where the resource model
has not been defined:

#Paraver (10/04/01 at 18:21):620244:0:1:1(4:0)

:0:

N R NP NP R BB N
O O O O OO O OO0
L O Y Gy S =

1:

1:

il e e
il i o Y S GV N T o

:0:40000001:1
:0:5124:1
:0:14981:0
:0:5568:0
:0:6209:0
:5124:60000019:2
:5124:5139:1
:5139:60000001:1
:5139:5400:7
:5400:60000018:1

22 CHAPTER 3. PARAVER TRACE FILE

1:0:1:1:1:5400:162283:1
2:0:1:1:3:5568:60000018:1
1:0:1:1:3:5568:1568294:1
2:0:1:1:4:6209:60000018:1
1:0:1:1:4:6209:146708:1

Note, that the resource model information in the trace header has been set to zero. In this
trace file there isn’t any information about where threads have been executing so the processor
identifier for all the trace records must be a zero value because the tracing tool has not
been able to get the resource allocation during the execution.

The header give us information about the date (10/04/01) and time (18:21) of the execution.
The total application time is 620244 microseconds.

Trace example (Resource model has been defined)

Next example shows the beginning of a real Paraver trace file obtained from the execution of a
SWIM application by on an IBM SP2. The tracing has been done using the PE benchmarker
tool (tool from the IBM Parallel Environment for AIX).

The PE Benchmarker generates an UTE trace. The obtained UTE trace contains information
about resource allocation during the execution and it has been translated to Paraver format using
the UTE2Paraver tool (CEPBA-UPC tool to translate UTE trace format to Paraver trace format)
to exploit all the resource information.

#Paraver(31/10/00 at 17:44):20156361:2(8,8):1:2(10:1,10:2)
:0:1:1:1:0:5539:5
:7039:5
:161783:
:403127:
:403127:
:403127:
:403127:

[= T = S S S
O O O O OO

N e
~N O O W N

L S S S
O O O O OO
o oot oo

:5539:10097:1
:7039:7844:1
:7844:30031:1
:10097:10366:5
:10366:10389:1
:10389:10415:5
:10415:1186112:1
:13:1:2:1:29522:34145:1
:0:1:1:2:30031:408501:5
:16:1:2:2:31717:32188:1
:16:1:2:2:32188:32715:1
:0:1:2:2:32715:432738:5
0:1:2:1:34145:34380:5
:13:1:2:1:34380:34402:1

WO WO Rk koW .
A
bR e s e
A SR N

e e e o = S SO S S S

Note, that resource model information has been defined and record traces contain the processor
identifier where thread has been running. If no resources are used, a zero is filled in the processor
identifier field of the record.

There are two NODEs with eight CPUs, one APPL. The APPL has two TASKs, the first one
has ten threads an has been running in the NODE 1, the second one has also ten threads but has
been running in the NODE 2.

Chapter 4

Configuration files

Paraver has two configuration files to configure some aspect of the environment. The user can
customize things such as colors, name of the code colors and gradient colors, labels ...

4.1 Paraver Configuration File (.pcf)

The main goal of the paraver configuration file is to offer to the user the possibility of configuring
his/her own environment in which he/she has to work. This file is composed by different sections
which give the possibility to define different aspects of the paraver environment such as colors,
labels and some default options. The configuration is a plain text file.

4.1.1 When are Paraver Configuration Files loaded ?

A paraver configuration file can be loaded in different ways. Since they let to define some options
like states (colors and labels) and user event labels they could be defined for a specific trace file,
so each time a trace file is loaded the configuration file could be loaded. Also, if the user wants to
use a defined environment for all the trace files we could load one when Paraver is launched.

Loading a paraver configuration file when Paraver is launched

In its initialization, Paraver checks for the environ variable PARAVER_CONFIG_FILE. If it exists, it
must contain the global name of the configuration file that will be used. If it does not exists, the
default configuration will be used.

Paraver Waming

The Paraver Configuration File :
1 luserlfunifupclaciparavericonfigiOMPconfig. pef

has been loaded.

o |

Figure 4.1: PARAVER_CONFIG_FILE environment variable

Example:

tcsh : setenv PARAVER_CONFIG_FILE /userl/uni/upc/ac/paraver/config/0OMPconfig.pcf
zsh : export PARAVER_CONFIG_FILE = /userl/uni/upc/ac/paraver/config/0OMPconfig.pcf

If the paraver configuration file is encountered, a message (figure 4.1) will be raised to show
that it has been loaded. The defined event labels are copied to all the traces that will be loaded.

23

24 CHAPTER 4. CONFIGURATION FILES

Loading a paraver configuration file when a trace file is loaded

The options (usually, colors and labels) defined in a paraver configuration file could be for a trace
file. Paraver offers a way to load them when a trace file is loaded.

When loading a trace file, if there is a file named like the trace name but with the .pcf exten-
sion instead of .prv/.map, Paraver loads it automatically. For example, when loading the trace file
called NAS_Bt_OpenMP.prv, if there is a paraver configuration file called NAS_Bt_OpenMP.pcf
in the same directory it is automatically loaded.

4.1.2 Paraver Configuration File format.

This file is composed of eight sections but some of them could be ommitted (see below). The goal
is override the default configuration in some aspects to make a most comfortable environment.

1. |DEFAULT_OPTIONS section| This section configure some general options of the paraver en-
vironment and must be the first section in the paraver configuration file. The section
is composed by some tags and their value. Each of this tags and all this section could be
omitted if the user does not want to override the Paraver default options.

The format is :
DEFAULT_OPTIONS

optionl default_value_for_that_option
option2 default_value_for_that_option

The options that can be changed in this section are (see figure 4.2) :

e LEVEL : Set the default level for a visualizer window. His values could be : SYSTEM,
NODE, CPU, THREAD, WORKLOAD, APPL Or TASK.

e UNITS : Set the default Paraver units. His values could be : MICROSEC, MILISEC, SEC
or HOUR.

e SPEED : Set the default value of the speed value. Remember, that speed is used when
displaying a window to avoid X-terminal freezing (see the Paraver Reference Manual for
a detailed description). The scrolling speed could be a value from 0 to 100 microseconds.

e LOOK_BACK : Set the default percentage or traces to look back when semantic value
couldn’t be computed (see the Paraver Reference Manual for a detailed description).
Its value could be a percentage from 1 to 100.

e YMAX_SCALE : Set the default maximum Y-scale.
e YMIN_SCALE : Set the default minimum Y-scale.

e NUM_OF_STATES_COLORS : Change the number of code colors used in Paraver. By
default, Paraver only works with 16 code colors (from code 0 to code 15). The user
can change this number but have to define the selected number of states labels/colors
in the STATES/STATES_COLOR sections.

e DEF_CFG_DIRECTORY : Add the specified direcotry to the default directories when
loading configuration files (see the Paraver Reference Manual for a detailed description).

e DEF_PRV_DIRECTORY : Sets the default directory to load trace files.

Also, there are four more options that could be changed which affect to the displaying
windows (see figure 4.2) :

e COLOR_MODE : Sets the default color mode for a displaying window. Values could be
ENABLED (color mode is enabled) or DISABLED (color mode is disabled).

4.1. PARAVER CONFIGURATION FILE (.PCF) 25

Speed
SPEED - o
[
(ms between Z evis)
Ok
Time 0 Search
o Percontalge of the Trace
REDRAY J” Comm _f Recy I Send _i Flag J7 Color ﬁl il LI 1‘ 2‘ L‘ T E
4 AN A Looking\gack for correct semantic value
4 4 H -, :
. Ok
COMM_LINES / RECV_ICONS * " COLOR_MODE
SEND_ICONS ' FLAG_ICONS LOOK BACK
—| Visualizer Module =0

Resource/Process Levels | Window Browser | Valugs | Time Units Tracefile

~ WORKLOAD ~ SYSTEM | EEEIRUIHEN] ane oo vanaow # Micra
<~ aPPL ~ NODE < Wil

o TasK + cpU X-Scale |fa781.09 F| + second
4 THREAD ~ Hour
¥ minmax [0 N b6 N F| -
——>

Apply |o;:'gn/c\nse| Cobors | Delete | copyecals| create | Derived |.‘"-.4c\nne | Events ok |

LEVEL Y min Y max

Figure 4.2: Default options section

e FLAG_ICONS : Sets the default value for flags. Values could be ENABLED (flags will be
painted by default) or DISABLED (flags won’t be painted).

e COMM_LINES : Sets the default value for communication lines. Values could be ENABLED
(communication lines will be painted by default) or DISABLED (communication lines
won’t be painted).

e SEND_ICONS : Sets the default value for send icons. Values could be ENABLED (send
icons will be painted by default) or DISABLED (send icons won’t be painted).

e RECV_ICONS : Sets the default value for receive icons. Values could be ENABLED (receive
icons will be painted by default) or DISABLED (receive icons won’t be painted).

2. | DEFAULT_SEMANTIC section | This section configure which values will be the default in the
Semantic Module. The user can select the default functions in object/compose levels and
their default parameters.

The format is :

DEFAULT_SEMANTIC

tag_level function_name
tag_level function_name
tag_level_param function_name parameter_number values
tag_level_param function_name parameter_number values
tag_level_param function_name parameter_number values

The first group (tag tag-level) defines which function will be selected in each level as default;
the second group defines the default parameters of a function (if the function has at least
one parameter).

The tag_level could be the tags : THREAD_FUNC, TASK_FUNC, APPL_FUNC, WORKLOAD_FUNC,
CPU_FUNC, NODE_FUNC, SYSTEM_FUNC, COMPOSE1_FUNC or COMPOSE2_FUNC; where each

CHAPTER 4. CONFIGURATION FILES

COMPOSE2_PARAM

Select Range Parameters
Global window@BT.CLASS.A.OMP_8. prv|

parameter_number O
COMPOSE 2 Parameters

Valug Mar | 3223372036654775607 pa.r‘ameterinumber 1

: =
Semantic Modrle . Semantic Module atue vin|
Global window@BT.CLASS.A OMP_8 prv Global window@BT.CLASS. A OMA =
COMPOSE1_FUNC -...__ B =
COMPOSE FUNCTIONS A COMPOSE FUNCTIONS
COMPOSE 1 Asls =1 COMPOSE2 FUNC .. COMPOSE 1 Asls =i
[t =] | S [as =]
COMPOSE 2 Select Range COMPOSE 2 Select Range 1
values
SYSTEM_FUNC
- RESOURCE MODEL WORKLOAD FUNC PROCESS MODEL
| .
ASYSTEM pding o WORKLOAD pding
s APPL_FUNC
NODE_FUNC -\t ooE pging TASK FUNG APPL pding | el
5 - o
CPU_FUNC == U pctietnd | A paang | THREAD_PARAM |
THREAD awenstate i |~y oo THREED 3 THREAD Parametérs
T . e Glohal Window@BT GLASS.A.OMP_Bprv
THREAD_FUNC = :
ok Detaut | - = ok Detaut | Giuen Statg Parancters
' ! | > s

function_name

o | peraut |
parameter_number 0

Figure 4.3: Default semantic section

tag corresponds to a object/compose level. The function_name must be a case sensitive
function name which exists in that level.

The tag_level param tag could be : THREAD_PARAM, TASK_PARAM, APPL_PARAM, WORK-
LOAD_PARAM, CPU_PARAM, NODE_PARAM, SYSTEM_PARAM, COMPOSE2_PARAM Or COMPOSE2_PARAM;
where each tag marks the level of the function that will be changed. To define the default

values for a parameter we have to tell the function_name, the parameter_number (because

some functions could have more than one parameter like Select Range function in compose

levels) and their values separated by comas. The first parameter number is 0, the second is

1, ... (see figure 4.3).

3. |DEFAULT_FILTER section| : Like the previous one, this section can be used to define the
default functions and default values in the filter module.

The format is :

DEFAULT_FILTER

tag function_name values
tag function_name values
tag function_name values

The tag tells which function we are defining and could be : FROM_FUNC, TO_FUNC, TAG_FUNC,
SIZE_FUNC, TYPE_FUNC or VALUE_FUNC (see figure 4.4). The function_name could be : All,
=, =, None, j or .

The default values for each function have to be separated by comas.

4. | DEFAULT_MICROSCOPE section | : Like the previous ones, this section can be used to define
the default functions and default values in the analyzer module. We can define the default
function in each microscope row and the default values for each function and parameter.

The format for this section is :

DEFAULT_MICROSCOPE

ROW1_FUNC function_name
ROW2_FUNC function_name

4.1. PARAVER CONFIGURATION FILE (.PCF)

ROW3_FUNC
ROW4_FUNC
PARAM
PARAM
PARAM

FROM_FUNC

TO_FUNC ..

N PARTHERS .
A And ’
To

TAG_FUNC =" 1

SIZE_FUNC "

Filter Module

=10

ohal window@BT CLASS. A OMP_8.p

L

.y Size

i Typ

TYPE_FUNC ™

VALUE_FUNC

Tag M "

4 and Or

4 and s

COMMUNICATION
ogical I Physical

Eiﬂr_fz.

MESSAGE g

<
Al o
None
USER EVENTS

-7 3

A
e Al 2

v < |47 1]

function_nam

function_name

values

function_name

e

Figure 4.4: Default filter section

function_name
function_name

function_name
function_name
function_name

parameter_number
parameter_number
parameter_number

value
value
value

27

Where in line ROWX_FUNC we are defining the default microscope function for each row and
in each PARAM line we can define the default values for each parameter for a functions (see

figure 4.6).

ROW1_FUNC

ROW3_FUNC

The function_name could be any

analyzer function

ROW2_FUNC ROW4_FUNC
g = '7 > = # Sends 1
[A S G e D) LR VO e Qs moceives =0
Row Ava\Semantic val sends | | aversgsBust | | eFvens 5 o
T = avg Semantic Val [

THREAD 111 0se 0 1722243 P save

TIinCAD 112 S o 2455103

THREAD 113 0ss o 3440892 Int Semantic va _
THREAD 114 038 0 346732 Begin Time
THREAD 115 038 il 34466 92 DM 57155 Bl 0

THREAD 1.1.6 0.93 o 04591.20 Avg Message Size EndTi

THREAD 117 naa n 34557 35 e nd Tine
THREAD 1.1.8 0.75 o 2620618 63774803.79

Stdew Burst Duration

Tulal 7.64 o 250434.15 # Burst 63/ £ABUS. 13
Average 035 o 131177 _

Maximum 0.93 o 34591.20 Time with Serm Val

Minimum 075 o 1722243 M Sermariic Val All Window| Al trace
staev o8 o saa20

Min Semantic Val
T []
Average Burst Parameters () e |
GibAl Wi ATWDRT C1 ASS A OMP_A iy i Calculate Al

- ; GraphTent GraphTent |

parameter_number 1

Parameters (3)
in Length (Micro.)

Mas Length (Micro) 6054775007

o | et

parameter_number O

Figure 4.5: Default microscope section

5. This section defines the label of the states that will be used. By default,
Paraver has its own defined labels which give the meaning of each state (for example, state

value 3 is defined as Waiting a message). The format is :

STATES

28

CHAPTER 4. CONFIGURATION FILES

number_of_state label
number_of_state label

The tag STATES marks the beginning of this section. The section is composed by a list where
the user has to specify the state value and its new label. The user can only specify the new
desired states labels, for the rest will be used its default value or its new definition (only if
a previous paraver configuration file has been loaded).

The number of state values that can be defined depends on the value defined in the default
options section; if no new number has been defined the user only can define the labels from
state value 0 to 15 (sixteen states).

. | sTATES_COLOR section | This section defines a new RGB color for each state. The format

for this section is :

STATES_COLOR
number_of_state {red,green,blue}
number_of_state {red,green,blue}

The tag STATES_COLOR marks the beginning of this section. The section is composed by a
list which where the user has to specify the new RGB color for each state that would be
overridden. The numbers of the RGB must be values 0 and 255, and define the red, green
and blue basics colors.

The number of state values that can be defined depends on the value defined in the default
options section; if no new number has been defined the user only can define the labels from
state value 0 to 15 (sixteen states).

. | GRADIENT_COLOR section | This section defines the RGB color for each gradient color. The

format is :

GRADIENT_COLOR
gradient_color {red,green,blue}
gradient_color {red,green,blue}

The tag GRADIENT_COLOR marks the beginning of this section. The section is composed by
a list which indicates the number of the gradient color and its RGB. The numbers of the
RGB must be between 0 and 255, and are the red, green and blue basics colors. Remember
that Paraver works with 15 gradient colors so the number should be between interval 0...14.

. | GRADIENT_NAMES section | This section defines the label of the gradient colors that will be

displayed within Paraver. The format is :

GRADIENT_NAME
gradient_color label
gradient_color label

The tag GRADIENT_NAME marks the beginning of this section. The section is composed by
a list which indicates the number of the gradient colors and their label. Remember that
Paraver works with 15 gradient colors so the number should be between interval 0...14.

4.2. NAMES CONFIGURATION FILE (.ROW) 29

9. | Events Section | This section is used to define the color and labels for the events. Each event
type can have associated a gradient color which will be painted in the displaying windows.

The format of this section is :

EVENT_TYPE

gradient_color type label

gradient_color type label
[VALUES

value label

value label

And is composed by pairs of EVENT_TYPE and VALUES. You can define many pairs as you
would. If you wouldn’t define labels for the values of certain events types you can omit the
tag VALUES for these event types.

The EVENT_TYPE format is the gradient color which Paraver will use to paint the event, the
type of the event and its label for the click utility. The VALUES format is the value of the
event and its label for the click utility. The values affect only to the events type defined in
the previous EVENT_TYPE tag.

Paraver distribution contains an example of paraver configuration file; also, in tutorial traces
there is one paraver configuration files for each trace type. This paraver configuration files accepts
lines with comments. A comment must start with the symbol #, when this symbol is encountered
when processing the file the rest of the line will be ignored.

4.2 Names Configuration File (.row)

The names configuration file is used to change the default row names for a specific tracefile, this
file can be generated within Paraver (see the Paraver Reference Manual for a detailed description).
By default, each row label is composed by the level and its object identifiers (in task level are appl
and task identifiers, in thread level are appl, task and thread identifiers).

Glohal window =1 3

i PROCESSOR OHE

When using the names configuration file
e WE @re changing the default names for
rows.

{ PROCESSOR THWO

EPRDCESSDR THREE -

EPRDCESSDR FOUR

Time

0
|1

REDRA W | J7 Comm I Recw _I Send _i Flag |7 Color ﬁl LI LI ﬂl ﬁl LI

Figure 4.6: Default microscope section

The names configuration file is a plain text file where there are defined the new label for
each tracefile object. There are four sections, one four each level, and all the sections must be in
the file with the correct order.

All the sections have the same format and they are composed by a list of new names for the
corresponding objects. The beginning of each section has the following tags :

LEVEL '"name of the level" SIZE '"number of objects in this level"

30 CHAPTER 4. CONFIGURATION FILES

The name of the level is the name of the type of objects (or name level), and could be
SYSTEM, NODE, CPU, WORKLOAD, APPL, TASK and THREAD; and the number of objects in this
level indicates how many objects are in this level. Note that this file is oriented to a tracefile
and sometimes only it is useful for one tracefile or more than one trace files if they have the same
number of objects in each level.

The order of the levels must be SYSTEM, NODE, CPU, WORKLOAD, APPL, TASK and THREAD.
Also, this file accepts comments. A comment line must begin with the symbol # and the rest of
the line will be ignored.

Example .- A names configuration file looks like :

HEFHHEHHEHH RS R R A AR SH R SRR H RS RS RS RS R R R R S R S
NAMES CONFIGURATION FILE
HEHH R R R R R R R R R R R

HEHHRHHH R R AR H BB R R R R R R R

CPU LEVEL

The format is :

LEVEL CPU SIZE n
name of cpu 1

name of cpu 2

..

name of cpu n

HEHH R R R R R R R R R R R R

LEVEL CPU SIZE 8

PROCESSOR 0 # Object CPU 1.1
PROCESSOR 1 # Object CPU 1.2
PROCESSOR 2 # Object CPU 1.3
PROCESSOR 3 # Object CPU 1.4
PROCESSOR 4 # Object CPU 2.1
PROCESSOR 5 # Object CPU 2.2
PROCESSOR 6 # Object CPU 2.3
PROCESSOR 7 # Object CPU 2.4

it
APPL LEVEL
The format is :

LEVEL APPL SIZE n
name of appl 1

name of appl 2

.

name of appl n

HEHHHHHH R R EEH R R R B R R R R R R R

LEVEL APPL SIZE 2
MPI+OpenMP appl # Object APPL 1
OpenMP appl # Object APPL 2

B e s e e
TASK LEVEL

The format is :

LEVEL TASK SIZE n

name of task 1

4.2. NAMES CONFIGURATION FILE (.ROW) 31

name of task 2
#
name of task n

HEFHHEFHEHH SRR ESH RS H SRR R R S R R S R

LEVEL TASK SIZE 3

MPI Rank O # Object TASK 1.1
MPI Rank 1 # Object TASK 1.2
OpenMP task # Object TASK 2.1

#E R
THREAD LEVEL

The format is :

LEVEL THREAD SIZE n

name of thread 1

name of thread 2

cee

name of thread n

#SH S

LEVEL THREAD SIZE 12

Master # Object THREAD 1.1.1
Slave # Object THREAD 1.1.2
Slave # Object THREAD 1.1.3
Slave # Object THREAD 1.1.4
Master # Object THREAD 1.2.1
Slave # Object THREAD 1.2.2
Slave # Object THREAD 1.2.3
Slave # Object THREAD 1.2.4
Master # Object THREAD 2.1.1
Slave # Object THREAD 2.1.2
Slave # Object THREAD 2.1.3
Slave # Object THREAD 2.1.4

it S R S S R S R
NODE LEVEL

The format is :

LEVEL NODE SIZE n

name of node 1

name of node 2

e

name of node n

HHH S

LEVEL NODE SIZE 2
Node 0 # Object NODE 1
Node 1 # Object NODE 2

Bt B B B e B e e e e T s e e e e e e S R S B R
SYSTEM LEVEL

The format is :

LEVEL SYSTEM SIZE n

name of the level

B S Fek B S R Fe S Fe LR S Ee e SR S B B R S SR Fe i E R S S S S Ee R

32

CHAPTER 4. CONFIGURATION FILES

LEVEL SYSTEM SIZE 1
4-way SMPs # Object SYSTEM

Bt B BB E e b s b B B s S S p e e S s B e e e R S e R
WORKLOAD LEVEL

The format is :

LEVEL WORKLOAD SIZE n

name of the level

B S Fek e R R e e e E R e R R SR S e e e e e e e S T T R e

LEVEL WORKLOAD SIZE 1
Workload (2 applications) # Object WORKLOAD

