Paraver

Version 2.1

Parallel Program Visualization
and Analysis tool

TUTORIAL

November 2000

Vi

CEPBA

Contents

1 Introduction 1
1.1 Paraver structure L L e e e e e e e e 3
1.2 Paraver tracefilerecords L 3

2 Message Passing Application. NAS LU Benchmark 5
2.1 What the trace is 7 A brief Description. oL 0oL 5

2.1.1 How has the trace file been coded 7 oL 5
2.2 How does it look : Visualization., 7
2.3 Alook into details : Zooming. 8
24 Timing. L 11
2.5 Changing the displayed information : Semantic. 12
2.6 Interested in ultimate detail : Textual display. 13
2.7 Too much information displayed : Filtering. 15
2.7.1 How can I filter communications. 16
2.72 HowcanIfilterevents. 18
2.8 Measuring things : Analyzer 18
2.8.1 Making a simple analysis oo 19
2.9 How parallel is our application ? Parallelism profile. 20
2.9.1 How parallel is my application 7 oL 21
3 OpenMP Instrumentation.
NAS BT Benchmark 25
3.1 What the trace is ? A brief Description. oL 0oL 25
3.1.1 Defined STATES e 25
3.1.2 Defined USER EVENTS 26
3.2 How does it look ? Visualization., 30
3.3 Alook into details : Zooming. 31
3.4 Interested in ultimate detail : Textual display. 35
3.5 Analyzing the parallel execution 36
3.5.1 Making a simple analysis o 0. 36
3.5.2 Parallelism profile 37
3.6 Identifying loop iterations and functions.o oL 39
3.6.1 Identifying loop iterations.. Lo 39
3.6.2 Analyzing the five main functions. 41
3.7 Showing benchmark data cache misses., 44
3.7.1 Showing data cache misses profile 45
3.7.2 Showing data cache misses in function of time 47
3.8 Window configuration files supplied for this chapter. 50

ii

CONTENTS

4 Hardware counters profile.

NAS BT Benchmark 53
4.1 What is the trace 7 A brief Description. 53
4.1.1 Defined USER EVENTS 53
4.2 Visualization of Graduated floating point instructions. 55
4.3 Visualization of data cache misses. L oL 58
4.3.1 Primary data cache misses. oo 58
4.3.2 Secondary data cache misses. oL 58
433 TLBdatamisses. v o i it e 59
4.4 TInstruction set used by the application 60
4.5 Window configuration files supplied for this chapter. 61
5 Multiprogrammed Executions. Visualization and Analysis 63
5.1 What the trace is ? A brief Description. oL 0oL, 63
5.1.1 Workload description 63
5.1.2 Defined STATES e 63
5.1.3 Defined COMMUNICATIONS 64
5.2 How does it look : Visualization. 64
5.3 Study of a single application oL oL e 66
5.3.1 Selecting one application.o oo 67
5.3.2 Computing the number of process migrations and average execution time in
€aCh Processor. o i i e e e e e 68

5.3.3 Parallelism profile for each application during the execution. 68

List of Figures

1.1
1.2
1.3
1.4

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

Visualization of a MPTI application 1
Visualization of an OpenMP application 2
Visualization of hardware events profile 2
Paraver Internal Structure Lo 3

First Displaying Window. NAS LU BenchMark 8
Window with Events. NAS LU BenchMark 8
Zooming the first communication area. NAS LU BenchMark 9
Zooming. NAS LU BenchMark 10
Local Orders. NAS LU BenchMark. 10
Saving the Useful view into a file. NAS LU BenchMark. 11
Timing utility. NAS LU BenchMark 11
Semantic window. NAS LU BenchMark 12
State As If function. NAS LU BenchMark 13
Equivalence between colors and state values. NAS LU BenchMark 14
Textual information. NAS LU BenchMark 14
Textual information with TextMode enabled. NAS LU BenchMark 15
Filter window. NAS LU BenchMark 15
Displaying the Physical Communication. NAS LU BenchMark 16
Communications from processor one to All. NAS LU BenchMark 17
Communications from processor one to five. NAS LU BenchMark 17
Communications with tag 2. NAS LU BenchMark 18
NAS LU Functions. NAS LU BenchMark 19
First Analysis. NAS LU BenchMark 19
Profile Visualization. NAS LU BenchMark 20
Profile Zoom.NAS LU BenchMark 21
Average number of threads in parallel. NAS LU BenchMark 21
Percentatge with 7 threads - Semantic. NAS LU BenchMark 22
Percentatge with seven threads. NAS LU BenchMark 22
First NAS BT visualization. OpenMP Instrumentation. 30
Saving the Global view into a file. OpenMP Instrumentation. 31
Thread Creation. OpenMP Instrumentation. 32
Body Execution. OpenMP Instrumentation. 33
Making a zoom to search the reduction. OpenMP Instrumentation. 33
BT Events View. OpenMP Instrumentation. 34
BT Reduction lock. OpenMP Instrumentation. 34
Textual information. OpenMP Instrumentation. 35
Textual information with labels. OpenMP Instrumentation. 36
Useful view NAS BT. OpenMP Instrumentation. 37
Simple analysis. OpenMP Instrumentation. 37
Parallelism profile view. OpenMP Instrumentation. 38

Parallelism profile zoom. OpenMP Instrumentation. 38

ii

3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

LIST OF FIGURES

Profile analysis. OpenMP Instrumentation. 39
Identifying loop iterarions. OpenMP Instrumentation. 40
Identifying loop iterations window. OpenMP Instrumentation. 41
Selecting function compute_rhs. OpenMP Instrumentation. 42
compute rhs function. OpenMP Instrumentation. 42
compute_rhs analysis. OpenMP Instrumentation. 43
Only one call. OpenMP Instrumentation. 43
Only one call. OpenMP Instrumentation. 44
Showing data cache misses profile (I). OpenMP Instrumentation. 45
Showing data cache misses profile (IT). OpenMP Instrumentation. 46
Data cache misses profile. OpenMP Instrumentation. 47
Data cache misses profile. OpenMP Instrumentation. 47
Data cache misses in an iteration. OpenMP Instrumentation. 48
Showing data cache misses profile in function of time. OpenMP Instrumentation. . 49
Data cache misses profile in function of time. OpenMP Instrumentation. 49
Data cache misses profile in function of time. OpenMP Instrumentation. 50
Data cache misses in function of time in an iteration. OpenMP Instrumentation. . 50
Working with states in infoPerfex traces. Hardware counters profile. 55
Selecting the ”floating instructions” event (I). Hardware counters profile. 56
Selecting the ”floating instructions” event (II). Hardware counters profile. 57
Graduated floating point resulting window. Hardware counters profile. 57
Graduated floating instr. zoomed window. Hardware counters profile. 57
Primary data misses window. Hardware counters profile. 58
Primary data misses zoomed window. Hardware counters profile. 59
Secondary data misses window. Hardware counters profile. 59
Secondary data misses zoomed window. Hardware counters profile. 59
TLB data misses window. Hardware counters profile. 59
TLB data misses zoomed window. Hardware counters profile. 60
Graduated Loads. Hardware counters profile. 60
Mapping between colors and applications. Multiprogrammed executions 64
Processor allocation trace file. Multiprogrammed executions 65
Processor allocation trace file (no migrations). Multiprogrammed executions. . . . 66
Selecting one application. Multiprogrammed executions 67
Swim application processor allocation. Multiprogrammed executions 68
Profile zooms to make the analysis. Multiprogrammed executions 69
Turb3D profile. Multiprogrammed executions 70
Hydro2D profile. Multiprogrammed executions 70

List of Tables

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3

5.1

Defined states. NAS LU BenchMark
Function Event Values. NAS LU BenchMark
Global Communication Values. NAS LU BenchMark
Percentatge time in parallel. NAS LU BenchMark

Trace file states. OpenMP Instrumentation.
User events related to NAS BT structure. OpenMP Instrumentation.
Miscellaneous events L Lo e e e e e e e
Related OpenMP programming model events.
Parallel function events. PARALLEL and PARALLEL DO directives
Hardware counters eventso e e e
Semantic Value returned by Last Evt Type + (Mod+1). OpenMP Instrumentation.
Time within a function. OpenMP Instrumentation.

Specific Event Types. Hardware counters profile.

Main loop function event types. Hardware counters profile.
Executed instructions. NAS BT BenchMark

Mapping between application and states. Multiprogrammed executions

WO

27
27
28
29
29
40

54

Chapter 1

Introduction

Paraver is a flexible parallel program visualization and analysis tool based on an easy-to-use Motif
GUI. Paraver was developed to respond to the basic need to have a qualitative global perception
of the application behaviour by visual inspection and then to be able to focus on the detailed
quantitative analysis of the problems. Paraver provides a large amount of information on the
behaviour of an application. This information directly improves the decisions on whether and
where to invert the programming effort to optimize an application. The result is a reduction of
the development time as well as the minimization of the hardware resources required for it.

Paraver offers a minimal set of views on a trace. The philosophy behind the design was that
different types of views should be suported if they provide qualitatively different analysis types of
information. Sometimes global qualitative display of the application behaviour is not sufficient to
obtain conclusions on where the problems are or how to improve the code. Detailed numbers are
needed to sustain what otherwise are subjective impressions. Through the analyzer module a user
can collect stadistics and obtain a detailed analysis.

What can be found in this tutorial ?

The Paraver tutorial is composed by four examples where each example shows a specific tracefile
type. The first example shows the execution of the NAS LU Application where the communications
between threads have been implemented using Message Passing Interface (MPI), this tracefile has
been done by Dimemas tool, this tool is used to predict the parallel execution on platforms with
different caracteristics.

MPI Application

THREAD 1,1,1

THREAD 1

THREAD 1

THREAD 1.4,

THREAD 1,5

THREAD 1

THREAD 1,7,

THREAD 1,8,

a72980
| =

J© Comm I Recy _I Send |7 Flag |7 Color ﬁl il Ll 1' m ll

Time

Figure 1.1: Visualization of a MPI application

The second example shows the real execution of a OpenMP application generated by a dynamic

CHAPTER 1. INTRODUCTION

instrumentation package. This package take traces from the real execution which are transformed
to a Paraver format tracefile. Therefore, using Paraver tools we can visualize and analyze the

application behaviour.

OpenkP Appli

THREAD 1,1,1

THREAD 1,1,

THREAD 1,1,

THREAD 1,1,

THREAD 1,1,

THREAD 1,1,

THREAD 1,1,

THREAD 1,1,

Timea 29496331

| =

REDRAH | J© Comm I Recy _I Send |7 Flag |7 Color

« < v w

Figure 1.2: Visualization of an OpenMP application

Our third example is composed by a set of tracefiles which contain the hardware event counters
extracted from the execution of an application. Those traces have been obtained using infoPerfex
tool which reads during the execution the SGI hardware event counters. We obtain tracefile which
tells the profile of primary misses, secondary misses, loads instructions, floating point instructions,

Secondary data cache misses profile

CFU 1

240516151 251964354 263413617

t
274362350 286311083

) 291806474
Time

J J

REDRAH | J© Comm I Recy _I Send |7 Flag _I Color

« < v w]

Figure 1.3: Visualization of hardware events profile

Finally, the fourth example shows the processor allocation of a set of parallel applications during
a workload made by the IRIX operating system . The applications request a number of processors
greater than the available so the operating system has to distribute the resources between those
applications, meanwhile, a tool (scpus) collect by sampling each time step which applications are
running in each processor. As a result, we obtain a tracefile which has the processor allocation
done during the workload. Using Paraver we can visualize and analyze those traces.

Any user can implemented his/her own processor allocation policy onto the machine and ana-

lyze its behaviour using scpus and Paraver tools.

This tutorial shows how Paraver can be used for several purposes in the area of application tuning.
Paraver offers a wide range of utilities and options to study the application behaviour:

e To play with the visualization (communication lines, send and receive icons) and filtering
(partners and message filters) parameters, to fix the feature that you think it is most relevant.

1.1. PARAVER STRUCTURE 3

The semantic module could be combined to extract the suited information from the tracefile.

e The zooming utility offers the possibility of magnifying a specific part of the displaying
window. Select the ”critical” area to get a the best view of a problem.

Use the ”global control” buttons to manage some windows at the same time.

The timing utility offers the possibility of measuring a specific part of the displaying windows.

e The analyzer gives you some quantitative measurements about the displayed tracefile.

The full explanation about each window can be found in Paraver : Reference Manual but
this tutorial tries to give a basic idea to begin to work with Paraver.

The web side of Paraver is : http://www.cepba.upc.es/paraver

Paraver e-mail support : cepbatools@cepba.upc.es

1.1 Paraver structure

Tracefile

Tracefile records

\
‘ Filter Module ‘

Tracefile records (filtered)

\ 4
‘ Semantic Module ‘

Time dependent value (semantic value)
plus event and communication records.

v v v

Visualization Textual Analyzer
Module Module Module

E

 oursion 522 (raneisen =372, 5 640t 2)

,,

Figure 1.4: Paraver Internal Structure

1.2 Paraver tracefile records

Paraver structure consists of three levels of modules (figure 1.4). First, working onto the tracefile
there is the Filter Module. This module gives to the next level a partial view of the tracefile.
Second, there is the Semantic Module which receives the tracefile filtered by the previous module
and interprets it. The Semantic Module transforms the record traces to time depedent values

4 CHAPTER 1. INTRODUCTION

which will be passed to the Representation Module. The Semantic Module is the most important
level because it extracts and give sense to the record values in the tracefile. The tracefiles have
a lot of information that could be extracted and this module selects what will be extracted, this
information is called, the semantics of the tracefile.

Finally, there is the Representation Module. It receives the time dependent values computed by
the semantic module and display it in different ways. The Representation Module drives thus the
whole process and offers a graphical display of the tracefile.

The visualization tracefile contains records which describe absolute times at/during which
events/activities take place on a run of the parallel code. Each record represents an event or
activity associated to one thread in the system. Three basic types of records are defined in
Paraver:

State records represent intervals of actual thread status or resource consumption.

Event records represent punctual user defined ”events” in the code. These user events are often
used to mark the entry and exit of routines or code blocks. They can also be used to flag
changes in variable values. Event records include a type and a value.

Communication records represent the logical and physical communication between the sender
and the receiver in a single point to point communication. Logical communications corre-
spond to the send/receive primitive invocations by the user program. Physical communica-
tion corresponds to the actual message transfer on the communication network.

Chapter 2

Message Passing Application.
NAS LU Benchmark

2.1 What the trace is 7 A brief Description.

The first example that we are going to see is an execution of the NAS LU application with MPI
(Message Passing Interface). For our working example, the execution has been done with eight
threads where all those threads execute the five iterations of the application body.

To obtain the Paraver trace file, we used the instrumentation library based on MPI profiling
interfaceVAMPIRTRACE! and DIMEMAS?, a set of tools to instrumentate message passing programs
and to predict the parallel program behaviour.

First, we used VAMPIRTRACE to obtain the instrumentation of the NAS LU benchmark exe-
cution. As a result, we obtain a DIMEMAS trace which allow to simulate and predict the parallel
execution on platforms with differents characteristics. From the simulation, DIMEMAS generate a
trace file to make the visualization and the analysis with paraver.

With DIMEMAS the user can set different parameters of the target machine and simulate the
behaviour in different platforms. To obtain our working example, we select a platform connected
by an Ethernet with eight monoprocessor nodes where the network bandwidth has been set to 85
Mbytes/s and each node has a Remote Communication Startup of 20 microseconds. We map each
thread of the application to a different node.

As a result of the simulation in the platform selected, we obtain an input Paraver trace file
that we can be visualized and analyzed. The trace file generated is coded by states, events and
communications.

2.1.1 How has the trace file been coded ?

The paraver trace files are composed by states, events and communications traces. During this
section, we are going to describe how the message passing application (MPI) has been coded by
DIMEMAS tool.

Defined STATES

The Table 2.1 shows the states generated that can be found in a trace generated by DIMEMAS
tool. Some of them don’t appear in our example. For example, the Waiting for CPU state only
appears when for example two MPI processes are executing in the same uni-processor node; they
must share the physical processor.

linformation about vampirtrace tool can be found at URL: http: //www.pallas.de
2information about Dimemas tool can be found at URL: http://www.cepba.upc.es/tools/dimemas/dimemas.htm

5

6 CHAPTER 2. MESSAGE PASSING APPLICATION. NAS LU BENCHMARK

State Value | Meaning

0 Idle

1 Running

2 Not created

3 Waiting a message
4 Waiting for link

5 Waiting for CPU
6 Waiting for Semaphore
7 Overhead

8 Probe

9 Send Overhead

10 Recv Overhead

11 Disk I/O

12 Not defined

13 Not defined

14 Not defined

15 Disk I/0 Block

Table 2.1: Defined states. NAS LU BenchMark

Defined USER EVENTS

Also, in our example we could see different user events, the event type 40 (to mark a function
entry/exit), event type 90 (to mark the entry into a global communication), etc ...

e USER EVENT type 40 : Appears when the thread goes into a function and when exits. Is
value at the entry is the number of the function where process goes in, at the exit of a
function its value is 0. An example of its values is shown in Table 2.2.

| Event Value | Name of the function |

... (MPI functions)
80 MPI_Recv (MPI)
81 MPI_Rsend (MPI)
82 MPI_Rsend._init (MPI)

... (LU functions)
138 exchange_1 (Communication)
139 exchange_3 (Communication)
140 exchange 4 (Communication)
141 exchange_5 (Communication)
142 exchange 6 (Communication)
143 init_comm (Setup)
144 jacld (Calculation)
145 jacu (Calculation)
146 12norm (Calculation)
0 End

Table 2.2: Function Event Values. NAS LU BenchMark

Note that the trace file has stored information about when a processor goes into a MPI
function or a LU function.

e USER EVENT types 91, 92, 93 : These event types are used to mark when a process is doing
the global communication operations (like MPI_Barrier, MPI Bcast, ...). The event type 91

2.2. HOW DOES IT LOOK : VISUALIZATION. 7

appears when the process goes into a global operation; the event type 92 appears on the last
process that arrives into the global operation (it tells that global operation can begin); and
finally, event type 93 appears when global operation has been executed. Their values tells
the global operation that is executed in that moment.

| Event Value | Global operation |

0 MPI_Barrier (MPI)

1 MPI_Bcast (MPI)

2 MPI_Gather (MPI)

3 MPI_Gatherv (MPI)

4 MPI Scatter (MPI)

5 MPI_Scatterv (MPI)

6 MPI_Allgather (MPT)
7 MPI_Allgatherv (MPT)
8 MPI_Alltoall (MPI)

9 MPI_Alltoallv (MPI)
10 MPI_Reduce (MPI)

11 MPI_Allreduce (MPI)
12 MPI_Reduce_Scatter (MPI)
13 MPI Scan (MPI)

Table 2.3: Global Communication Values. NAS LU BenchMark

Defined COMMUNICATIONS

Point to point communications have been defined using communication traces. The communi-
cations go from processor X to processor Y with their tag identifier and their number of bytes
(size).

In a communication trace we can define the logical times (where communication is ordered)
and the physical times (when communication is really done). The logical communication limits
have been set when processor in going to send the message and when its going to receive. Physical
communication limits have been defined when message is really sended and message is really
received by the target processor.

Global communications (like broadcast, barriers, ...) have been defined using states where
there is a phase to wait the rest of mpi processes, an overhead code and finally a phase to execute
the global communication.

2.2 How does it look : Visualization.

First, launch Paraver, two new windows appear, the Menu Window and the Global Controler.
Go to the option menu Tracefiles/Load Tracefile and load the trace file called mpi_nas lu.prv
that can be found in directory tutorial_traces/mpi_nas_lu in tutorial traces package®.

When the trace file has been loaded, paraver asks for load its paraver configuration file (float-
ing_point_instructions.pcf) which contains information about the user event labels explained in
the previous section. Load it by clicking the LOAD button.

To create a window, press the button Visualizer in the Global Controler window, then a
new window appears to manage all the windows that will be created, press the CREATE button in
the Visualizer window and a Displaying Window should appear named win_1. In the Displaying
Window you can see the axis, the local orders like Play, Pause, Playback, ... To display the trace
in the window go to the button Play in the Displaying Window and press it. As a result, you can
see the first visualization of the NAS LU Benchmark execution (Figure 2.1).

3traces are available in Documentation tool section at URL http://www.cepba.upc.es/tools/paraver/paraver.htm

8 CHAPTER 2. MESSAGE PASSING APPLICATION. NAS LU BENCHMARK

win_1

CPU 1

34¢ 4651011

Time B

JE |
REDRAW J© Comm I Recw _I3end _IFlag |7 Color ﬂ ﬂm ﬂl ﬂl m

Figure 2.1: First Displaying Window. NAS LU BenchMark

In the win_1 we see the execution of the NAS LU application. The Y axis represent the eight
threads and the X axis shows the time. We can see the five main iterations of the LU execution
where the number of communication (yellow lines) is greater than in the other parts. Also, we can
see two different states in a thread : the light blue which means a non-working state like waiting
for a message, overhead, ... and the dark blue which means a working state where the thread is
doing work.

After creating the window, press the FLAG toggle button and redrow the window just pressing
the REDRAW button. The drawing area is redisplayed and you can see the events of the trace file
represented as green flags (Figure 2.2).

win_1

ooy 1 JFR RS

Time

JE]
I~ Comm _I Recy _I Send |7 Flag |7 Color ﬂl il LI 1' ﬂl LI

Figure 2.2: Window with Events. NAS LU BenchMark

2.3 A look into details : Zooming.

The previous windows show a global view of the LU execution, but some users can be interested
in looking the details of the trace file and not only the global view. The Zooming utility offers
the possibility of magnifying a specific part of the displaying window to look the details.

To zoom a specific part of the displaying window click the magnifying glass icon in the Global
Controler window (step 1 in figure 2.3). Then, the Timing window will appear in the screen and
when the cursor goes into the drawing area on a displaying window it looks like a vertical line to
select the specific part to zoom. Click the initial and final points in the displaying window (steps
2 and 3), in our example we select the points showed in figure 2.3 to obtain a zoomed window
which contains the first iteration of LU application.

2.3. A LOOK INTO DETAILS : ZOOMING. 9

As you can see in the Visualizer window Paraver create a new window where all the parameters
except the X-Scale value has been inherited and where the drawing area displays the selected area
(Figure 2.3). This window contains the first iteration of LU application, note the behaviour of the
communications, there is a first section where the communications goes from top to bottom and a
second section where those communications go from bottom to top. If you zoom any of the other
four iterations you will see the same behaviour.

Click the first
point at time 997474 When selecting the initial point
note the Initial Time textbox.

Initial time

A [ssr47a e

Final time

""""""""" > [1716502 us

Duration

,,,,,,,,,,,,,,,, > | 719109 us

e 579926¢

N\ |
@ REDRaw | = CD% i Reev I SENF\ag 7 oeoor 44| L”E | »

Click the second point
at time showed in Final
Time textbox on Timing
window.

-- When selecting the final point
""""""""""""" note the Final Time tetbox and
the Duration of the selected
interval.

Click the magnifying icon.

The Timing will be raised and
the cursor will look like a vertical
bar when it goes into a window.

SERERE R

RIS

cmmmemeemae e

After the final click point
a new window is created
which contains a zoom
of the selected area.

win_1_z1

UL e gt
A
g
I 171ﬁ7

REDR# J” Comm i Recy I Send 7 Flag J7 Color ﬁl il Ll 1‘ ﬂl ﬂ

Time

Figure 2.3: Zooming the first communication area. NAS LU BenchMark

The next step is to see how really works one of these iterations zooming in the last created
window. Let’s go to create a more detailed visualization.

Make two zooms taking as a source window the last zoomed window, the first zoom should be
done in the first section of the iteration (when the communications go from top to bottom) and
the second in the second section (when the communications go from top to bottom), more or less
like figure 2.4. Finally, if you want, you can make another zoom from one of this two windows
(like shows figure 2.4). Remember, each time that you want to make a zoom you have to click the
magnifying glass icon in the Global Controler window and select the initial and final points.

Note that successive zooms will show in more detail the trace file, for example, each zoom that
has been done, lets to see in more details of the iteration and focus into specific points.

The displaying window works like a tape recorder. On the right-bottom corner there is a set
of buttons to manage the drawing area (Figure 2.5).

To display the trace forward press the Play button on the window zoom and the drawing area
begins to scroll on the trace file. To stop the scroll-on press the Pause button. Also, the trace
file can scroll back with the Playback button. With the scale bar and the set of local buttons the
trace file can be managed and displayed on different points.

10 CHAPTER 2. MESSAGE PASSING APPLICATION. NAS LU BENCHMARK

win_1_z1

Initial time Initial time
1132044 us 1441835 us

Final time Final time
1261007 us 1541361 us

Duratian Duration
128363 us 99526 us

1 Time T |
Ok I

l\rcmm\ﬂﬂﬂﬂﬁﬂ
N

JE
/RAW 7 Comm I Recy I Send

2 14
1540778
I =

REDRAW J7 Comm I Recw _i3Send [T Flag I7 Color ﬂl LI LI ﬂl m LI

1260252

Time Time

I
REDRAW

I Col I Recy 1 Send |7 Flag 7 Color

Initial time
1161959 us
Final time
1185841 us
~ Duration
23882 us

1165701

Time:

I | g

REDRAW 7 Comm i Recw I Send 7 Flag = Colar ﬂ ﬂ ﬂ ﬂ m ﬂ

Figure 2.4: Zooming. NAS LU BenchMark

« < > w1l

Figure 2.5: Local Orders. NAS LU BenchMark.

Saving a window in a window configuration file

Since one of this windows will be used in next sections (window called win_1, we are going to
save it in a window configuration file. Before begins to save it, change its name to Useful view
(go to the visualizer window and select it as the current in the Window browser list, type the new
name in the Name text box, then, click the APPLY button to redraw the window and apply the
new name).

To save the window in a window configuration file, select the Configuration/Save menu
option. It will raise the Select window to select the windows that will be saved. Select the
Useful view window by clicking its name in the Windows list and click the SAVE button on the
right bottom of the Select window; then, write the file name where window will be saved (we
recommend the file name useful_view.cfg because it will be used in next sections) and click the OK;
the window will be saved in a file. Finally, close the Select window by clicking its OK button.

11

2.4. TIMING.

Tracefles Cunﬂguratmnl Options
Load

Save
Filter
I lics/tutorial_traces/mpi_nas_Ius.cfg

@ Select the Configuration/Save ;
i menu option Directori Files
Y ; Bl - |base_to_workefg Al
Select window [_[O]x] first_zaom.cfy
. i . . orig parallelism_profile.cfy
Saving windows for tracefile : mpi_nas_lu.prv d state_as_is.cfy
)) useful_view.cfy
Wyindows list : i i
with_in_iteration.cly
seful view 4 i
win_1_z1 @ Eii = =
win_1 z1 z2 .
win_1 71 z2.2 Select the window by clicking its name Selection
I I_Iracesfmp_nas_lufuseful_view.cfd |

win_1_z1_zZ z3

ok | Fiter | cancel

Fill the file name and
click the OK button

to save it

Click the SAVE button o

to save the selected wi :
Select All| Unselect Al @ Fo— o

Figure 2.6: Saving the Useful view into a file. NAS LU BenchMark.

2.4 Timing.

To measure a specific part of the window there is the Timing utility. This utility works like the
Zooming. First, click the clock icon in the Global Controler window (step 1 in figure 2.7). As in
the Zooming the Timing window is raised and when the cursor goes into the displaying window
it looks like a vertical line. Click the initial and final points (steps 2 and 3) in the displaying

window and you will see in the Timing window the duration of the selected part.

Initial time

1174348 us

Final tire

1177322 us
Duration
2374 us
When second point has been
selected, we could see the
duration of the selected
interval.

— 1185701
I T
REDR&W | |7 Comm _ Recv 1 send [Flag /7 Color 44| 4| o M| »| m|

@ Click the first point @

Click the second point

at time showed in Final
Time textbox on Timing Global Contruller 5]
o B

“<rrue

4

Click the timing icon.
@ The Timing will be raised and

the cursor will look like a vertical

bar when it goes into a window.

Figure 2.7: Timing utility. NAS LU BenchMark

In the Figure 2.7 we are measuring the third dark blue zone in the CPU number 8. After click
the initial and final points the Timing window contains the interval selected and its duration.

12 CHAPTER 2. MESSAGE PASSING APPLICATION. NAS LU BENCHMARK
2.5 Changing the displayed information : Semantic.

The information displayed in the previous windows is called the Useful state view where the
working state is painted as dark blue and a non-working state is painted as light blue.

As we said in the previous sections, the trace file is composed by states, events and commu-
nications which not only contains the Useful information and more information can be extracted
from the trace file through the Semantic module.

The semantic module helps you to interpret the state and event traces through the model
process levels.

Click now onto the semantic icon f on the Global Controler window and the Semantic

Window will appear (Figure 2.8).

Semantic Module -]

Useful view:

COMPOSE FUNCTIONS

COMPOSE 2 As s =

PROCESS/RESOURCE MODEL

EEETN E =

CPU Adding — |
THREAD Usetul = |

Ok | Default |

Figure 2.8: Semantic window. NAS LU BenchMark

The name of the current displaying window is shown at the top of the window. Also, in the
Semantic window we can see the different levels of the Paraver trace files plus the compose levels
that will be explained in the next sections.

At the thread level we can see the Useful state view. The Useful state view is used to work
with the object activity. Each level has a sub menu to select the function that will be applied.
In our example we are working on the CPU level and only are enabled the THREAD and CPU sub
menus. The THREAD level functions select what type of information will be extracted from the
traces.

First, select the window called Useful view in the Window browser on the visualizer window.
The window name Useful view appear like the current one at the top of the semantic window.
Then, go to the Semantic window and click the thread sub menu; in the pop up menu raised you
can see the functions implemented by default at the THREAD level. Select the function STATE
As Is and redraw the window (click the REDRAW button). Also, change its name to State As Is
view by modifying its name in the Visualizer Module window and pressing the APPLY button.

Now in the displaying window (Figure 2.9) the states are painted with its state value. Repeat
the process for the window win_1_z1 : select it, change its thread level function and change its
name to One iteration. Note that new states appears in the displaying window, to view the
equivalence between colors and states values click the button Colors in the Visualizer window;
this will raise a window where you can see in which colors are painted every state (Figure 2.10).
When make a zoom onto a window those values are inherited so the new window has the State
As Is function selected.

2.6. INTERESTED IN ULTIMATE DETAIL : TEXTUAL DISPLAY. 13

Initial time
997474 us
Final time
[z
" Dualon
|7191Dﬁ us
T : T
e 1T -
1312872 us
Initial time
1120829 us Final time
Final time 1364362 us
1258203 us H H - Duration
~ Duwation Tme | / 1710974\ ~—— 71430 us
[oree ot N o
T M J7 Comm { Recy i SEN F\ag\cmur | 4 > m _

One iteration_z2.3

REDRAW I Comm 1 Recv I Send J7 Flag 7 Calor

« <] > w]

1257664
I J

REDREW | 7 Comm i Recy i send |7 Flag 7 coior 44| 4| b w1 B |

Time

Figure 2.9: State As If function. NAS LU BenchMark

2.6 Interested in ultimate detail : Textual display.

The displaying window offers you a graphical information to understand the application behaviour,
but sometimes it is not enough; if you need specific and detailed information about certains point
Paraver offers a textual display of the trace file. This utility is called the What/Where information
and offers a textual display of the information around a selected point.

Click on a row in the drawing area of the displaying window One iteration and then you will
obtain the textual information around this point. As example, we click on the CPU 1 at time
1172454 microseconds (the first small yellow zone in the CPU number 1) and obtain a textual
information around the selected point (Figure 2.11).

As a result, we obtain the information around the selected point, observe that in the textual
display there is the information about the semantic value, events and communications. In our
example, we are working with states (remember that the function used in the Semantic Module
was State As Is) so the semantic value refers to state values. For example, the semantic value 1
refers to the state working, the semantic value 7 refers to the state overhead. Also, in the textual
display we obtain information about the events and communications around the selected point.

The textual display can offer its information like a numerical view (Figure 2.11) where all the

14 CHAPTER 2. MESSAGE PASSING APPLICATION. NAS LU BENCHMARK

Code Colors Change Mode Gradient/Flag Colors
1}
== Gz |
e Graglents |
1}
. Gragients |
areen T
- Graglente |
R |
Blue —
| Copy Colore T
Ok | .
12 Mat defined
13 Not defined i
14 Mot defined i
S P]

Figure 2.10: Equivalence between colors and state values. NAS LU BenchMark

What/Where Information _ O] x|
TRACEFILE : mpi_nas_lu.pry Window Mame : One iteration
Chject : CPU 1
Click Time : 1172454 Time Units : Microseconds (us)

Semantic Value : 1 Duration : 1330

User Event at 1166593 Type is 40 Yalue is 138

Semantic Value : 1 Duration : 4

Logical SEMD at 1168603 to £,1,2,1 at 1211915, Duration : 45312 (Transmision = 14}, (size : 2, tag : 1240)
User Event at 1166603 Type iz 40 Walue is 83

Semantic Yalue : 7 Duration : 20

Semantic Value : 1 Duration : 1

User Event at 1166624 Type is 40 Value is 0

Semantic Yalue : 1 Duration : 2

Logical SEMD at 1166626 ta 5,1,5,1 at 1166653 , Duration : 27 (Transmision = 7), {size : 4, tag : 600}
User Event at 1166626 Type is 40 Yalue is 83

Semantic Yalue : 7 Duration : 20

Semantic Value : 1 Duration : 1

User Event at 1166647 Type is 40 Walue is 0

Semantic Value -1 Duration : 1

User Event at 1166648 Type is 40 Yalue is 0

Ok

#
| = L
5

|
I” Semantic 7 Events [T Communication [1 &l the burstl_l Text Model Repeatl Save as Text

Figure 2.11: Textual information. NAS LU BenchMark

information appear as numbers or it can be viewed as labels, where appear the label related to
the number, if it exists. To view the textual display with labels enable the toggle button at the
right bottom of the What/Where window called Text Mode (see figure 2.12).

In this point we can see in more detail what it is happening. In our selected point, we can
see in which functions the thread goes in. For example, the textual display shows how the thread
goes first into the function exchange_1 and while it is within this function, it calls two times to
the function MPI_Send to send a message. Also, we can see the different states where the thread
goes. For example we can see that the communication startup within the call MPI_ Send is 20
microseconds as we explained in section 2.1.

Note that this utility collects the traces around the selected value; if you are working in a high
scale of visualization, the number of lines raises and the clearness is lost. Select an adjusted scale
to get the desired level.

2.7. TOO MUCH INFORMATION DISPLAYED : FILTERING. 15

What/Where Information _ O] x|
TRACEFILE : mpi_nas_lu.pry Window Mame : One iteration
Chject : CPU 1
Click Time : 1172454 Time Units : Microseconds (us)

Running Duration : 1930

User Event at 1166593 Function exchange_1 (Communication)

Running Duration : 4

Logical SEMD at 1168603 to £,1,2,1 at 1211915, Duration : 45312 (Transmision = 14}, (size : 2, tag : 1240)
User Event at 1166603 Function MPI_Send (MP[)

Ovethead Duration : 20

Running Duration : 1 Ok
User Event at 11686624 Function End

Running Duration : 2

Logical SEMD at 1166626 ta 5,1,5,1 at 1166653 , Duration : 27 (Transmision = 7), {size : 4, tag : 600}
User Event at 1166626 Function MPI_Send (MPI)

Overhead Duration : 20

Running Duration : 1

User Event at 1166647 Function End

Running Duration : 1

User Event at 11686645 Function End

7]

. . 5 !
7 semantic 7 Events [T Communicalion [| All the burstll' Text Model Repeat| Save as Text|

I~ i

Figure 2.12: Textual information with TextMode enabled. NAS LU BenchMark

2.7 Too much information displayed : Filtering.

Sometimes when there are a lot of events and communications in the displaying window the
visualization won’t give you information, because the drawing area have so much icons, and com-
munication lines. To avoid this effect, Paraver lets you to filter the trace file to see whatever you
want.

Click on the filtering icon on the Global Controler window to raise the Filter window

(Figure 2.13). This window lets you to filter communications and events that won’t be displayed.

Filter Module ==l B3

Inside an iteration

COMMUNICATICON

I Physical

PARTHERS

From Al ||

A and e OF

Ta All 4”7

MESSAGES

A and < Or
Size Al ||
o

USER EVENTS

O

A and < Or

value M I— ﬂ

Ok |

Figure 2.13: Filter window. NAS LU BenchMark

The name of the current displaying window appear at the top of the window. Note, that there
are two main parts, one to filter communications and the other to filter events. The next two
points explain how to use those parts.

During this section, we are going to use window called win_1_z1_z2_z3 created on page 10.

16 CHAPTER 2. MESSAGE PASSING APPLICATION. NAS LU BENCHMARK

Before begin this section, select the thread semantic function State As Is instead of Useful
function and change its name to Inside an iteration; to change it, select the window as the
current, (by clicking the Window browser) change its name in the NAME text box and applying the
changes.

Also, save it in a window configuration file called inside_an_iteration.cfg (to save it, remem-
ber the end of section 2.3). By saving windows in window configuration files, you can shutdown
paraver and load the windows the next time to continue with the Paraver Tutorial.

2.7.1 How can I filter communications.

Our working example has two types of communications, the logical communications and the phys-
ical communications. By default, physical communications are filtered. To see them, select the
zoomed window called Inside an iteration on the Window browser; then, you can see at the top of
the filter window the name of the window and now, enable the toggle button PHYSICAL, and redraw
the zoomed window. After redraw the displaying window you can see the physical communication
painted as red lines (Figure 2.14).

Inside an iteration

1185746
J e

REDRAW J© Comm I Recw _I3end |7 Flag |7 Color ﬂ ﬂ LI ﬂl ﬂl m

Time

Figure 2.14: Displaying the Physical Communication. NAS LU BenchMark

The logical and physical communications are the two main types of communications. Inside
this types the filter window allows filter communications between specific partners or specific size
and tags. If no logical and no physical communication are selected, all the communications will
be filtered.

How can I display communications between specific partners

To filter communications between specific partners put your attention in the Partners area on
the Filter window.

At the first, we will display the outgoing communications to the processor 1; but before do it,
be sure that the current window is the zoomed window Inside an iteration (if it is the current you
should see his name at the top of the Filter window). Go to the FROM sub menu and select the
symbol ” =" when this function is selected the text box is enabled. Write in the Form textboz the
number 1 and redraw the window. Now, in the displaying window you can only see the outgoing
communications from processor 1 to the other processors (Figure 2.15).

Now, select the symbol ”=" on the T0 sub menu and fill in the To textboxr the processor 5.
Then redraw the window and you only will see the communications that goes from processor 1 to
processor 5 (Figure 2.16).

Also, the communications can be filtered From X And/Or To Y. As example, we could see
the communications that goes out the processor 1 or arrives to the processor 5 only selecting the
OR toggle button between the FORM and To lines.

2.7. TOO MUCH INFORMATION DISPLAYED : FILTERING. 17

Filter Module [_ O]

Inside an iteration

COMMUNICATION
7 Logical |7 Physical
PARTHERS
From = o ||‘I

A and <, Or

Inside an iteration To Al | I

MESEAGES

A And <, Or

Size Al = ||
r—

USER EVEMTS

i

A And <, Or

1185746 value Al || ﬂ
Time
r

I JE

J© Comm _I Recy _ISend |7 Flag 7 Color ﬂl il LI ﬂl ﬂl LI | Ok I

Figure 2.15: Communications from processor one to All. NAS LU BenchMark

Filter Module [_ O]

Inside an iteration

COMMUNICATION
7 Logical |7 Physical
PARTHERS
From = o ||‘I

A and <, Or

Inside an iteration To = 4 |

MESEAGES

A And <, Or

Size Al = ||
r—

USER EVEMTS

i

A And <, Or
1185746 value Al || ﬂ

Time
| — r—

REDRAMW J© Comm _I Recy _ISend |7 Flag 7 Color ﬂl il LI ﬂl ﬂl LI Ok |

Figure 2.16: Communications from processor one to five. NAS LU BenchMark

How can I display communications with a specific tag and size

The mechanism to filter communications with specific size and tag is similar to the mechanism to
select communications between specific partners. First, be sure that there isn’t any communication
filtered between partners (the FROM and T0 sub menus must have the ALL selected). Don’t worry
if there is the one and five processors selected in the textboxs, Paraver only uses it if the textbox
is enabled.

Now, go to the TAG sub menu, select the symbol ”=" and fill the number 2 in the right side
textbox; redraw the window and you only see the communications lines which has tag 2 (Figure

18 CHAPTER 2. MESSAGE PASSING APPLICATION. NAS LU BENCHMARK

2.17).

Filter Module [_ O]

Inside an iteration

COMMUNICATION
7 Logical |7 Physical
PARTHERS

From Al || i

A and <, Or

Inside an iteration To Al | I B

MESEAGES

A And <, Or

Size Al = ||
r—

USER EVEMTS

i

A And <, Or

1185746 value Al || ﬂ
Time
r—

J T

J© Comm i Recvy _I Send |7 Flag 7 Color ﬂ ﬂ LI ﬂl ﬂl m Ok |

Figure 2.17: Communications with tag 2. NAS LU BenchMark

To select a specific communication size do the same on the size line. Also, we can select a
specific size, a size greater or less that a value and a size different than a value. As in the partner
selection, you can use the And/Or toggles for combine the size and tag selections.

2.7.2 How can I filter events.

Now, we are going to work with events and learn to filter them. First, be sure that all the
communications are filtered; to filter all the communications disable the logical and physical toggle
buttons at the top of the window.

In our example trace file there are a lot of events but we are going to focus in the event 40
(Function). To select this type, select in the TYPE sub menu the symbol ”=" and put the type.
Now, all the events type will be filtered except this type.

Then, we focussed in this event type. Before redrawing the function we are going to filter all
the events except the events with the value 133. This event marks the entry of he function called
blts (Calculation).

To filter this function go to the VALUE sub menu, select the symbol ”=" and fill in the right
side textbox the number 133; redraw the window and then, the displaying window will only show
the flags with type 40 and value equal to 133 which are the flags that marks the entry of the NAS
LU function blts (Figure 2.18).

2.8 Measuring things : Analyzer

Paraver offers a analyzer utility to study some features about the application behaviour. Using
the Filter and Semantic you can obtain a detailed analysis of the trace file. We are going to start
with a simple example to show how use the Analyzer. Later, we are going to compute the average
number of processes running in parallel.

The window used in this section can be loaded from a previous saved window configuration file
(useful_view.cfg). If it exists because you hadn’t deleted or you hadn’t closed paraver, use it.

2.8. MEASURING THINGS : ANALYZER 19

Filter Module =]

Inside an iteration

COMMUNICATION
I Logical _i Physical

PARTHERS
From all ||
A and <, Or
Inside an iteration To Al | I
® MESSAGES

A And <, Or

Size Al = ||
r—
USER EWEMTS

w - affe 2

A And <, Or

5

1185746 value - _|||133 ﬂ
Time
i

I JE

J© Comm _I Recy _ISend |7 Flag 7 Color ﬂl il LI ﬂl ﬂl LI | Ok I

Figure 2.18: NAS LU Functions. NAS LU BenchMark

If not load it from the window configuration file (by selecting the CONFIGURATION/LOAD menu
option).

2.8.1 Making a simple analysis

Select the Useful view window as the current (the window shows the two default states, the idle
state (light blue) and the working (dark blue).

To compute the analysis click the Analyzer icon in the Global Controller window. Two windows
will be raised at the same time : the Timing window and the Analyzer window. Besides, the cursor
looks like a little corner when it goes into the displaying window.

At this moment we can analyze all the trace file, clicking the ALL TRACE button in the Analyzer
window, or a selected area, selecting it in the displaying window. In our first analysis click only
the button ALL TRACE on the left corner in the Analyzer window to make an analysis of all the
trace file, and wait a moment until the analysis will be computed.

The results are written into the Analyzer columns (Figure 2.19).

Analyzer J[=] E3
Row Avwg Semantic Val | # Sends = | # Receives = | # Events = | Ok
A

CPUA 0.92 834 838 7857 Save

CPU 2 0.80 955 954 8955

CPU 3 0.63 853 354 8343

CPU 4 0.61 B36 B36 TBES Useful view

CPU 5 0.62 836 836 7867 Bagin Tine

CPU B 0.74 354 853 8353 0

CPU 7 0.77 954 953 8943

CPU3 0.73 536 834 7663 Entt Time -

6739266

Total 5.99 6358 6358 66456 Duration :
Average 0.75 794,75 794,75 8307 5799266
Maximurm 0.2 954 954 8953

Minimum 0.61 634 634 7657

Stdey 01 158.75 158.75 644.01 All Window| Repeat

] Al indow| _Repeat |
e Fl I Calculate Al
S g | Graph/Text Graph/Text | Graph/Text | GraphiText I

Figure 2.19: First Analysis. NAS LU BenchMark

The first column shows the CPU utilization percentage. This value is obtained from the

20 CHAPTER 2. MESSAGE PASSING APPLICATION. NAS LU BENCHMARK

integration of CPU burst which state was running during the timing interval prefixed. It could be
useful to test the load balancing, in our example the load is well balanced because the Variance
between all the rows is tiny.

The second and third columns give us the number of sends and receives made during the
timing interval prefixed. If the filtering was set with logical communication, then the values are
interpreted like the number of logical sends and receives respectively. If the filtering was set with
physical communication, then the values are interpreted like the number of physical sends and
receives respectively. If the filtering was set with both communication types, then the values are
interpreted like the number of logical and physical sends and receives respectively. The logical
communication was activated by default.

The fourth column collect the number of user events founded during the timing interval pre-
fixed. If the filtering was not set with some event condition then the analyzer don’t care about
the user event traces.

The last rows show some computations as the adding, the average, the maximum and the
minimum, for each column.

On the right hand of the window you can see the name of the window where the analysis has
been done and his limits : initial time, final time and duration.

2.9 How parallel is our application ? Parallelism profile.

An interesting view is the parallelism profiling to see how many processors/tasks are doing work
at the same time. This view give us an idea of the parallel behaviour and also, an analysis can be
done to study this behaviour.

First, select the window called Useful view in the Window browser. With this window as
the current, click on the PTASK toggle button on the left hand of the Visualizer Window. To
show the parallelism profile we have to work at the top level, in our working example this top level
is the Ptask or application level.

Then, change the Y MAX scale to 8, because we have 8 processors and the maximum value will
be 8 threads running at the same time.

Press the Create button and a new window will be raised at the Ptask level. Disable the
communication lines disabling the toggle button Comm at the bottom of the window. By default,
the window has enabled the color mode, but when you are working with windows where it’s better
see them as a time line you can disable the color of the displaying window. Disable the toggle
button COLOR at the bottom of the new window and redraw the window. This will redraw the
axis and now you can click the play button to see the parallel profile of the application.

Without the color we obtain a timing function visualization (Figure 2.20) where the window
is showed as a function instead of a color code. Also, change its name to Parallelism profile.

Parallelism profile ==l E3

PTASK 1

t t t t
1159263 2319708 2491168 451011

Time ST7E067

il
REDRAMW i Comm _{ Recy _I Send _i Flag _i Calor ﬂl il LI ﬂl ﬂl LI

Figure 2.20: Profile Visualization. NAS LU BenchMark

2.9. HOW PARALLEL IS OUR APPLICATION ? PARALLELISM PROFILE. 21

The window shows the parallelism profile of the application. Note the five main iterations
where the o®parallelism is higher and that the behaviour between them is similar. Make a zoom
and you can see the parallelism profiling of the application in more detail.

Parallelism profile_z1 [100 =]

PTASK 1

Initial time

I 2319706 us

Final time

; ; ; ; ; I 3085209 us
2383348 2537568 2636759 2836010 2985231 B —
3080732 Duration

Time I == I 765503 us
REDRAW |) Comm _IRecy _iSend _IFlag _i Color ﬂ ﬂ ﬂ ﬂ M M

Figure 2.21: Profile Zoom.NAS LU BenchMark

2.9.1 How parallel is my application ?

An easy analysis can be done to resolve this question. We are going to make a small analysis of
the parallelism profile to obtain things like : average number of threads running in parallel, how
much time we have the maximum parallelism (the 8 threads are doing work at the same time),
how much time only one thread is running, ...

Select the profile window called Parallelism profile; click the analyzer icon on the Global
Controler window and make the analysis for all the trace. When the analysis is computed, the
function Avg Semantic Val gives us the average number of threads that have been running in
parallel along the execution.

Analyzer =] E3
Row Avg Semantic Wal | # Sends = | # Receives = | # Events = | Ok
I
PTASK 1 5.99 6358 6355 66736 Tewe
Total 5.93 6358 B355 BE736
fAverage 5.99 6358 B358 BGE736 Parallelism profile
Maimurn 5.99 5358 6356 66736 Begin Time
Minimum 5.99 6358 B335 BE736 0
Stdey 1} 0 1} 0
End Time :
5799266
Duration
799266
] All Windnwl Repeat
JE—
- = I Calculate Al
siiace | Graph/Text Graph/Text | Graph/Text | GraphiText |

Figure 2.22: Average number of threads in parallel. NAS LU BenchMark

Note that our application has eight threads and the average number of threads running in
parallel is 5.99 (figure 2.22).

The next analysis that we are going to do is to compute how much time the application has n
threads doing work at the same time. We are going to present how to do the analysis when we
have seven threads (n=7) running in parallel, but the same mechanism can be used for any value
of n.

Until now, we have the parallel profile of the application behaviour. To compute this analysis
first select in the COMPOSE 2 sub menu the function called Select Range, this will raise a

22 CHAPTER 2. MESSAGE PASSING APPLICATION. NAS LU BENCHMARK

window to fill the range that will be selected, put a 7 in the field Value Max and a 7 in the field
Value Min. This function filter all the values that they aren’t between the range, in our example
we are only interested in the value 7, which tell us that there are seven processors running in
parallel.

In the COMPOSE 1 select the Sign function, this will change the seven value to one and we
obtain a visualization like the useful where : there are running (or state 1) when the application
is working with the seven threads in parallel and a non-working otherwise.

Semantic Module =

Parallelism profile

Select Range Parameters

Paralielism prafile COMPOSE FUNCTIONS

COMPOSE 1 Sign = |
COMPOSE 2 Parameters
COMPOSE 2 | Select Range —
Value Maxl 7

Yalue kin I 7 FROCESS/RESOURCE MODEL

PTASK Adding |
| Ok I Default
TASK, Adding - |

THRE&D

Ok | Default |

Figure 2.23: Percentatge with 7 threads - Semantic. NAS LU BenchMark

Now, make an analysis for all the trace and when it will be finished in the function Awvg
Semantic Val we obtain the percentatge of the global time that the application is running with
seven threads in parallel (Figure 2.24). Also, the Time with Sem Val function give us the total
time where the application has seven threads running in parallel and functions such as # Bursts
and Average burst give us the number of times that the application has been with seven threads
and his average duration time.

Analyzer =] E3
Row Avg Semantic Wal | # Sends = | # Receives = | # Events = | Ok
I
PTASK 1 0.20 6358 6355 66456 Tewe
Total 0.z0 6358 B355 BE456
fAverage 0.z0 6358 B358 B6456 Parallelism profile
Maimurn 0.20 5358 6356 BB45E Begin Time
Minimum 0.z0 6358 B335 BE456 0
Stdey 1} 0 1} 0
End Time :
5799266
Duration
799266
] All Windnwl Repeat
JE—
- = I Calculate Al
siiace | Graph/Text Graph/Text | Graph/Text | GraphiText |

Figure 2.24: Percentatge with seven threads. NAS LU BenchMark

The analysis can be done for eight, seven, six, ..., to one. We did the analysis only for seven
threads but we present the result that should be obtained with the other number of threads
running in parallel in the Table 2.4.

The first column shows the number of threads that are running in parallel and the second

2.9. HOW PARALLEL IS OUR APPLICATION ? PARALLELISM PROFILE. 23

column the percentatge of the total time that the application has been with this number.

Number of threads | Percentatge
0.25
0.20
0.20
0.18
0.07
0.05
0.02
0.04

=N W R Ot g 0

Table 2.4: Percentatge time in parallel. NAS LU BenchMark

Adding these percentatges we obtain a value of 1 which represents the 100 % of the execution
time.

Chapter 3

OpenMP Instrumentation.
NAS BT Benchmark

3.1 What the trace is 7 A brief Description.

The trace file used in this chapter is the real execution of the NAS BT on a SGI MP environment.
The trace file has been obtained through a dynamic instrumentation package that supports a
dynamic library interposition mechanism.

During the execution of the benchmark the package collects a trace that corresponds to the real
execution of the application and later this trace can be viewed through Paraver. This mechanism
can be used with SGI MP programs for which the source code is not available, and it lets us to see
its execution behaviour onto the machine. In our example, we have the source code of the NAS
BT and we can see how it has been parallelized.

The trace generated by the dynamic instrumentation package contains different states and
events which have been recorded during the execution. Our working example has been executed
using eight threads, the first thread is the master thread of the application and the others are
the slave threads. Those threads help the master in the parallel regions where the parallelism is
opened. The execution has been done on a Silicon Graphics Origin 2000 with 64 processors using
a cpu set of eight physical processors.

3.1.1 Defined STATES

The table 3.1 shows the states defined in the trace file.

Only bold face states are used by a SGI MP application, the rest are used when a mixed
message passing (MPI) and shared memory using OpenMP directives application is traced.

Each state means:

e the Idle state is used when threads are waiting for more work (between parallel regions)

e the Running state is used when the threads are doing useful work (sequential or parallel
application code)

e the Not created state is used when threads aren’t created. For example, by default in SGI
MP environment threads aren’t created until the first parallel region, so while thread master
is executing the first sequential code the rest of threads are in a not created state.

e the Blocked is used when threads are blocked because the number of suggested threads that

will take part in the next parallel region has been reduced (in our example, threads haven’t
been blocked).

25

26 CHAPTER 3. OPENMP INSTRUMENTATION. NAS BT BENCHMARK

| State Value | Label |

0 Idle

1 Running

2 Not created

3 Waiting a message

4 Blocked

5 Thd. Synchr.

6 Test/Wait/WaitAll

7 Sched. and Fork/Join
8 Probe

9 Blocking Send

10 Immediate Send

11 Immediate Receive

12 I/0

13 Group Communication
14 Tracing Disabled

Table 3.1: Trace file states. OpenMP Instrumentation.

e the Thd. Synchr. state is used when threads are in a synchronization point, for example
this state is used when threads are trying to get/release a lock, or when threads are waiting
in a barrier synchronization.

e the Sched. and Fork/Join state is used when a thread is doing scheduling code (like
scheduling the loops, executing code of the MP library, ...) or when master is waiting at the
end of a parallel to join the parallelism so, this state is used to mark when a thread is doing
an overhead code.

e the I/O state is used when thread is doing a read/write operation.

3.1.2 Defined USER EVENTS

The dynamic instrumentation package has collected some information that have been coded using
paraver USER EVENTS. The trace file contains different user events. Working with their event
types and values we can extract very different kind of information. Next points describe the trace
file user events and their meaning.

NAS BT application structure

Some user events have been used to mark the entry and exit of the main NAS BT functions. These
type of user events has been traced manually.

The NAS BT benchmark has a main loop that calls five parallel functions. These functions
have parallel regions and parallel do directives that tell to the compiler the code that could be
executed in parallel. The five functions are repeatedly executed. Before executing this main loop
there is an initialization; also, within this initialization phase there is parallel code. The main
NAS BT loop looks like :

DO I=1, N
compute_rhs
X_solve
y_solve
Z_solve
add

END DO

3.1. WHAT THE TRACE IS ? A BRIEF DESCRIPTION. 27

For example, the function compute_rhs is composed by a parallel region (parallel directive)
with two loops (do directive) and four parallel loops (parallel do directive), so the parallelism is
forked and joined five times (also see Parallel function events. PARALLEL and PARALLEL DO
directives. on page 28). Other functions like x_solve, y_solve, z_solve and add only have one
parallel loop.

| Event Type | Label | Values |
70000000 | x_solve 1 Begin
70000001 y-solve 0 End

70000002 | z_solve
70000003 | add
70000004 | exact_rhs
70000005 | compute_rhs
70000006 | initialize
70000007 error_norm
70000008 rhs_norm

Table 3.2: User events related to NAS BT structure. OpenMP Instrumentation.

Table 3.7 shows these event types and their labels. Note that the five main loop functions has
been marked with different event types where their values mark the entry and exit to the function.
Also, initialization routines have been marked (initialize and exact_rhs).

We will see this structure in the analysis of our instrumentation example. The NAS BT
benchmark could be executed with a different amount of data and iterations. For our working
example we used a class known as ”class A”, which do around 200 iterations to the loop which
braces the five functions.

Class = A
Size = 64x 64x 64
Iterations = 200

Miscellaneous events

Inside the miscellaneous events group there the I/O events (see table 3.3).

| Event Type | Label | Values |

40000001 | Application 1 Begin
40000003 | Flushing Traces | 0 End
40000004 | I/O Read
40000005 | I/O Write
40000011 | I/O Size

Table 3.3: Miscellaneous events

These events mark the read/write operations done by the application and their size. The I/O
Read and I/O Write mark the beginning (Begin value) and the ending (End value) of the I/0O
operation, and the I/O Size contains as an event value the number of bytes involved in the I/O
operation.

The Flushing Traces event is used to mark when the dynamic interposition package is flushing
traces to disk. In our example, there isn’t any flush during the execution because all the trace
events have been stored in memory.

Related OpenMP programming model events

The trace file contains user events related to the OpenMP programming model. These event types
mark the beginning of parallel code, its synchronization points (lock and barriers) its joining, ...

28 CHAPTER 3. OPENMP INSTRUMENTATION. NAS BT BENCHMARK

Table 3.4 shows these event types and their defined values :

| Event Type | Label | Values |
60000001 | Parallel (OMP) 0 close
1 Do/Sections (open)
2 Region (open)
60000002 | Worksharing (OMP) 2 End
3 Begin Do/Sections
4 Begin Single
60000016 | Join (OMP) 1 Begin
60000005 | Barrier (OMP) 0 End

60000003 | Block (OMP)

60000007 | Lock (OMD)

60000008 | Sched. Lock (OMP)

61000000 | Reduction lock (address 0x10059100)
61000001 | Reduction lock (address 0x10059180)

Unlocked status
Lock

Unlock

Locked status

O Ur W O

Table 3.4: Related OpenMP programming model events.

e The Parallel (OMP) user event type marks the parallel code. Its value tells which type of
parallelism is being opened : a parallel region or a parallel do/sections and when it is closed.

e The Worksharing (OMP) user event type marks the beginning and the ending of a work
sharing construct within a parallel region, this event only can be found within a parallel
region and its user event value marks which kind of work (do/sections or a single region)
is going to be distributed along the threads that are taking part in the parallel region. For
example, in the NAS BT benchmark this event type can be found in the parallel region of
the compute_rhs function.

e The Join (OMP) user event type are used to mark in the master thread the joining time
at the end of a parallel region.

We have a lock type for each lock found by the instrumentation library to avoid study their
behaviour separately. Playing with the event values we could draw when a thread has the
mutual exclusion, when is trying to get the lock and when is trying to release it.

The labels associated to each lock have been generated by the instrumentation package. The
names could be : Sched. Lock (OMP) which is the lock used by the library, Unnamed
critical lock used by unnamed critical regions or calls mp_setlock and mp_unsetlock, and
the Reduction lock (address 0x...) used in loops where there is a reduction variable.
More locks can be generated by the instrumentation library like named criticals and lock
used in OMP calls. But they only appears when working with specific calls and directives.

Parallel function events. PARALLEL and PARALLEL DO directives

The compiler transform the code that has been marked to execute in parallel (parallel regions
and parallel do) to a function which can be executed by different threads at same time. The
dynamic instrumentation package has marked which function will be executed in each parallel.
Their encoding is showed in table 3.5; the values of the event type Parallel function is the identifier
of each parallel function.

For example, the function compute_rhs has five parallel code regions, one parallel region
(_—mpregion_compute_rhs_1) and four parallel loops (__mpdo_compute_rhs_...), and for each parallel
code region the compiler have generated a function (event values from 9 to 13 on table 3.5).
Note that for PARALLEL directives, the function name generated begins with mpregion; but for
PARALLEL DO directives begins with mpdo.

The user event with End value is used to mark the end of the parallel region/do.

3.1. WHAT THE TRACE IS ? A BRIEF DESCRIPTION. 29

| Event Type | Label | Values |

60000018 | Parallel function | 1 _-mpregion_initialize_1
2 _-mpregion_initialize_2
3 __mpregion_initialize_3
4 _mpdo_exact_rhs_1

5 __mpdo_exact_rhs_2
6
7
8

_-mpdo_exact_rhs_3
_-mpdo_exact_rhs 4
_-mpdo_exact_rhs_5

9 _-mpregion_compute_rhs_1
10 _mpdo_compute_rhs_1.1
11 __mpdo_compute_rhs_2
12 _-mpdo_compute_rhs_3
13 _-mpdo_compute_rhs 4
14 _-mpdo_x_solve_1

15 _-mpdo_y_solve_1

16 _-mpdo_z_solve_1

17 _-mpdo_add-1

18 _mpdo_error norm_1

19 —mpdo._rhs norm_1

0 End

Table 3.5: Parallel function events. PARALLEL and PARALLEL DO directives

Hardware counter events

The trace file also contains information about cache misses. Since primary cache misses counters
and secondary cache misses counter can be taken in the same execution in an Origin 2000, two
trace files are provided. The first contains information about primary instruction and data cache
misses (NAS_BT primary_misses.prv) and the second one contains information about secondary
instruction and data cache misses (NAS_BT secondary _misses.prv).

By default, the dynamic instrumentation package has read the hardware counters at the entry
and exit of each parallel function (a parallel loop with guided, interleaved or dynamic scheduling
can call many times its parallel function) and has coded them by an event type whose value is the
number of cache misses occurred between the two reads. Therefore, the user event value at the
end of the parallel functions contains the cache misses occurred within them.

| Event Type | Label |

42000009 | Primary instruction cache misses (NAS_BT primary_misses.prv).
42000010 | Secondary instruction cache misses (NAS_BT _secondary_misses.prv).
42000025 | Primary data cache misses (NAS_BT _primary_misses.prv).

42000026 | Secondary data cache misses (NAS_BT_secondary_misses.prv).

Table 3.6: Hardware counters events

Table 3.6 shows the user event types for each counter and the trace file name where counter
has been traced.

During the chapter we only are going to use the NAS_BT _primary_misses.prv trace file, but

some window configuration files has been supplied to create the next examples for NAS_BT _secondary_misses.prv
trace file.

30 CHAPTER 3. OPENMP INSTRUMENTATION. NAS BT BENCHMARK

3.2 How does it look ? Visualization.

This section will try to show a first view of the trace file. The next sections try to focus the
visualization into specific parts and explain how the information could be extracted.

The trace file is composed by states and a lot of user events which have hidden information
that could be extracted when combining the different paraver modules.

To create the first view, launch PARAVER and load the trace file which contains the primary
misses hardware counter (NAS_BT _primary_misses.prv) that can be found in directory tuto-
rial_traces/omp_nas_bt in tutorial traces package’.

When the trace file has been loaded, paraver asks for load its paraver configuration file
(NAS_BT _primary_misses.pcf) which contains information about the colors and user event labels
explained in the previous section. Load it by clicking the LOAD button.

Now, to create a first window, press the Visualizer button in the Global Controller window
to raise the Visualizer Module window and press the Create button. This will create a displaying
window named win_1 where there are painted only the axis. Now, press the Play button on the
right bottom corner of the displaying window and we could see the global view of the trace file.

win_1

T T A T AR 11

T N [T AT
THRERD 382 T T A T]
|

THREAD 1.1.4 " | |
'

THREAD 1,1,2
) | I

TN TR
THREAD 1,1,5 ' \
1 | 1 1 1
. . . |
THREAT 6 f f) \
A I T I B !
THREAD 1,1,7
o T 7O 7 T T T A 7 7T T T T TR TN
| | |

THREAD 1.1.8

Tirme 173419835

—1
REDRA | J© Comm I Recw _I Send I7 Flag J© Color ﬁl i”ﬂ ﬂ m ll

Figure 3.1: First NAS BT visualization. OpenMP Instrumentation.

The visualization (figure 3.1) shows the execution of NAS BT benchmark using 8 threads where
thread identified as THREAD 1.1.1 is the master thread of the OpenMP application and the rest
are the slaves threads. By default, State As Is view is showed for that trace file?> where dark
blue is Running state, light blue is the Idle state, yellow is the Sched. and Fork/Join state,
etc ...

Since this window will be used in next sections, we are going to save it in a window configuration
file. Before begins to save it, change its name to Global view (go to the visualizer window and
type the new name in the Name text box, then, click the Apply button to redraw the window and
apply the new name).

To save the window in a window configuration file, select the Configuration/Save menu
option. It will raise the Select window to select the windows that will be saved. Select the
Global view window by clicking its name in the Windows list and click the SAVE button on the
right bottom of the Select window; then, write the file name where window will be saved (we
recommend the file name global_view.cfg because it will be used in next sections) and click the OK;
the window will be saved in a file. Finally, close the Select window by clicking its OK button.

Ltraces are available in Documentation tool section at URL http://www.cepba.upc.es/tools/paraver/paraver.htm

2Usually, the default view is the Useful view (see the Message Passing Application Example (MPI)) but the
paraver configuration file NAS_BT _primary _misses.pcf has changed this property. It has changed the default view
to the State As Is view.

3.3. A LOOK INTO DETAILS : ZOOMING. 31

Tracefles Cunﬂgurat\onl Options
Load

save,

Filter

I ftutorial_traces/omp_nas_bt/.cfy
@ Select the Configuration/Save
menu option Cirectories Files

Select windovr == E3

Saving windows for tracefile : NAS_BT_ptimary_misses.prv

a_nas_ktsoriginal

Wiindaows list :

7]

@ i —i= =P

Selection
Select the window by clicking its name

|1

I \ces/omp_nas_btiglabal_view.cid |
Click the SAVE button

/ ok | Fiter | cancel|
to save the selected window En

Select ll| Unselect Al @ — | o6 | Fill the file name and

click the OK button

to save it

Figure 3.2: Saving the Global view into a file. OpenMP Instrumentation.

3.3 A look into details : Zooming.

The Zooming utility lets us to look into the details on we are interested. For example, in this
trace file we can see the thread creation, the execution of sequential regions and parallel loops,
synchronizations, The next points show some aspects that can be found in the trace file, but
we suggest that the user should play with the different modules to extract more hidden information
that won’t be explained in this tutorial.

A look into the thread creation

In this point, we are going to focus our view into the beginning of the application. We are going to
create a new window to see the thread creation and the beginning of the first parallel execution.

To zoom the thread creation, click the magnifying glass icon in the Global Controller window
(step 1 in figure 3.3). Then, the Timing window is raised to show the limits that will be selected;
select a small zone at the beginning of the Global view window like figure 3.3 (steps 2 and 3, note
the selected limits in the Timing window); when second point has been selected a new window is
created where we can see a zoom of the selected interval. In our example, we can see the thread
creation plus the beginning of the parallel execution.

Slave threads are created in the first parallelism spawning and when all have been created, the
first parallel code begins. They are created only in the first parallelism spawning, the next time
where the parallelism is forked these threads will be used. Between the parallel zones where the
master thread is executing sequential code, they are in an idle state (wait for work). Sometimes,
when this waiting is long the threads block theirself waking up in the next parallel zone.

A look into the execution body

Now, we are going to focus our view into the execution body of the application. As we explained
in section 3.1, the application body is composed by five functions that are executed many times,
so parallelism is forked and joined many times. The entry and exit to these functions have been
marked by USER EVENTS (see table 3.7 on page 40), these events will be used later to make an
analysis.

CHAPTER 3.

(2)

Global view

32

Click the first
point at time O

OPENMP INSTRUMENTATION.

When selecting the initial point
note the Initial Time textbox.

Time 173072400
I |
REDRAW | 7 Comm | Recy | Send " Flag [colr 44| 4| »| M| | 1]

©

Click the second point
at time showed in Final
Time textbox on Timing
window.

When selecting the final point
note the Final Time tetbox and
the Duration of the selected
interval.

\

P [oaseras us

NAS BT BENCHMARK

Initial time
ous
Final time

Dwration

P> | 2432745 us

Click the magnifying icon.
The Timing will be raised and
the cursor will look like a vertical
bar when it goes into a window.

EETEERRETERRY R =

BlEE 2L

«drmug

®

After the final click point
a new window is created
which contains a zoom
of the selected area.

Global view_z1

Time 2418518
S

REDRAW | = Comm tReev _isend = Flag = coor 44| 4| | 1|] 11|

Figure 3.3: Thread Creation. OpenMP Instrumentation.

We are going to make successive zooms to obtain a good visualization of the execution body.
First, make a zoom onto the window called Global view within the parallel zone; to make this
zoom select a region more or less like figure 3.4 to obtain the window called Global view_z1.2.
This window begins to show a in the execution of the application.

Finally, make another zoom onto the last window called Global view_z1.2 like figure 3.4 to
obtain a new zoomed window called Global view_z1.2_z2. This windows shows in more detail

the execution body.
Note how the parallelism is opened and forked many times, and between them, there is a bit

of idle state. This idle state is a wait for work state that the slaves threads do between two

parallelism spawning.

A look into a loop with a reduction

Parallel applications usually use locks to access in a mutual exclusion to shared variables. The
dynamic interposition mechanism detect those access and store them in the trace file. Our example
only uses two locks to access a reduction variable in mutual exclusion that has been generated by
the compiler, but other applications can use many locks and could have behaviour problems.

Our goal is shown how the zooming utility lets to focus our visualization into specific details
of the trace file.

First, make a zoom on displaying window called Global view_z1.2_z2 like figure 3.5 (we
are selecting the ending and beginning of a parallel zone). In the new window we can see the
finalization of a parallel loop, note that thread master finish its work (ending of dark blue color)
and remains in a Scheduling and Fork/Join state (yellow color) until the last thread finishes.

3.3. A LOOK INTO DETAILS : ZOOMING. 33

Global view

THREAD 1,1, HHIHI { H!;\HHI o H; I

. 2 ¢ |-
THRERD 1.1 g
H [T i
L I——11

" H . ' nrin
THREAD 1,.3 : : !
[T |
1 ‘ \”:HHH I
il u
i1

ri 1]
THRERD 1.1.6
IHlHH | ‘I \IHH;‘H‘Q \‘I T }‘H]

M TN TR] L }‘III -

THREAD 1,1.4
o

I 1l
[T ”\EHHHIH“ . ‘i“ HI ‘\I\HI |

THREAD 1,1.5 |

173072400
| S =
n

REDRAW | | Comm | Recy 1 sEndN o)]
'S

P3P [P
(B
JHE

[HH]
1T 1
;HI\I \;M\ :]

THREAD. 1,1 B i
THeEan 1,1 §] m 4
[1 o 11
THREAD 1.4
L1 || IIIIIH LLui Ll ULl IIIIIH\ LI

THREAD 1.1

Tirns

Global view_z1.2_z2
THREAD 1,4,1
THREAD
THREAD 4.4,
THREAD 1.1.4
THRERD
THRERD

THREAD

37046860
I /T

REDRAW | [Comm i Recy i Send I Flag /" color 44| «| [1| »| 1|

Titne

Figure 3.4: Body Execution. OpenMP Instrumentation.

When threads finishes their work, they changes their states to the idle state (waiting for more
work) until the next parallelism spawning.

Global view_z1.2_z2

37046860
|

Comm _{ Recv i Send rg or 44 | »| [PP E‘\

Global view_z1.2_z2 73

Time

35905117
Jp |

REDRAW 7 Comm _1Recy _iSend [T Flag I Color ﬁl i‘ _b(ﬂl)m LI

Go to Event/Time button

Figure 3.5: Making a zoom to search the reduction. OpenMP Instrumentation.

Now, we have to find one of the reduction lock variables. The instrumentation library has

34 CHAPTER 3. OPENMP INSTRUMENTATION. NAS BT BENCHMARK

marked each lock as a different event type. To show their types, click on the Events button in
the Visualizer Module window. It will raise a window (Events window) with a list of all defined
events types and values (figure 3.6). Search the reduction event types (also see table 3.4 on page
28) by scrolling the event types list.

Events window [oI
Defined Event Types/Values
Color Type Label Value Label

BUO0UOTE— Sched. Lack [OMF)
2 BO000D1E Join (OMP)

Unlocked status
Lock

Unlock

Locked status

10A9040. it

5 70000001 y_solve 4 Reduction locks
=
» o
.
.
Y
Ly
Ly
Y
Visualizer Module [- O[]
Level | Window Browser | Values 'y Time Units | Tracefile
Global view:_z1 - &
~ TASK Giohal 12] Hca‘glimms SR
4 THREAD = + Semond
¥ minmax o i .
~ CPU < Hour s
Y
.
epply | openciose | colors | Deete | copyvaiues | creste | ciome | Evems | ox |

Figure 3.6: BT Events View. OpenMP Instrumentation.

The labels for each event type have been defined in the paraver configuration file that has been
loaded in trace file loading.

The current zoomed loop doesn’t have any reduction variable. To go to a loop which has
one, press the Go to Event/Time button in the window called Global view_z1.2_z2_z3 which
contains the end of a parallel loop. This will raise a window to fill the event type that you want
to search (figure 3.7); fill the event type 61000000 in the Type text box and press the Go TYPE
button, the Global view_z1.2_z2 23 goes to to the first occurrence of this event type.

Move to Tine Move to Event
Tme [Type Vaiue
[[s1000000 [
VRl A Ab| A > <o vem> ves - : p
GoTime _[[GoType] And| Or| GoValus || ¥ 73473623
I - . jo |
REDRAVL £ 7conn i recy i sens = riag - Conr 84|]| 9]]
- {_L

Go to Event/Time
button

Time L
I == |

REDRAW | 7 Conm i Recy -t Send I Flag ¥ Caor 44| 4 [¥T BI[ob |

= =

gthe lock |

— 173443380

I =
REORAW | [~ Comm i Recy sSend |7 Flag I~ Coor 44| 4| | 1| W[W]

Figure 3.7: BT Reduction lock. OpenMP Instrumentation.

The figure 3.7 shows where is the reduction lock variable, making a zoom of this region we can

3.4. INTERESTED IN ULTIMATE DETAIL : TEXTUAL DISPLAY. 35

see in more detail how does it work.

Note how the lock has been coded (use the textual display to see the flag values). When a
thread is trying to get the mutual exclusion and when it tries to release the lock are painted as a
Thd. Synchronization, the dark blue between them is the execution in mutual exclusion. Each
point is marked with flags, where the value tells what it trying to do (see table 3.4 on page 28).

The Zooming utility allows us to see this level of detail. Because it is a visualization of the real
execution onto the machine, Paraver lets us view and detect the general and the specific problems.
A lot of problems could be detected by visual inspection, for example unload balancing, too much
synchronization with locks, ... the user has to decide what he/she want to see and understand
what it means.

3.4 Interested in ultimate detail : Textual display.

We have seen the graphical visualization of the trace file; but through the textual display we
can obtain specific textual information on certain points. For example, click in the parallel zone
onto the thread master row in the window called Global view. We obtain a textual information
around that point (Figure 3.8) which describes what was happening in that moment.

[
What/Where Information =1 E3

TRACEFILE : NAS_BT_primary_misses pry Window Name : Global view =

Object : THREAD 1.1.1
Click Time : B5336569 Time Units : Microseconds {us)

Semantic Value : 7 Duration : 7507

User Event at 63604904 Type is B0000016 Value is 0
Semantic Value : 7 Duration : 5

User Ewent at 63604903 Type is 60000016 Value is 0
User Event at 63604903 Type is 60000001 Value is 0 Ok
Semantic Value : 1 Duration : 7

User Event at 63604916 Type is 70000001 Value is 0
Semantic Value : 1 Duration : 2

User Ewent at 63604918 Type is 70000002 Value is 1
Semantic Value : 1 Duration : §

User Ewent at 63604924 Type is 60000015 Value is 16
User Ewent at 63604924 Type is 60000001 Value is 1
Semantic Value : 7 Duration : 377

A

=]]

. o 5 o '
7 Semantic |7 Events 7 Communication [1 All the burst | I Text Mode| Repeat| Save as Text|

Figure 3.8: Textual information. OpenMP Instrumentation.

In this textual information we can see the USER EVENTS and the semantic value bursts around
that point. The semantic value bursts are the states values because we are working in a State As
Is view where the semantic values returned by the Semantic Module are the State As Is. Now,
enable the Text Mode option (enabling the toggle button Text Mode on the right bottom of the
What /Where window), the numbers will be shown as labels®.

The new textual information (Figure 3.9) has the labels in text mode which give us more
understable information. You can see what is happening around your clicked point, for example,
in our clicked point the master thread (THREAD 1.1.1) goes out the function y_solve and after
a small running state goes into the function z_solve where spawns the parallelism in the parallel
loop of z_solve function (__mpdo_z_solve_1). Between those flags you can see the states where the
master thread has been and their duration.

According to the scale where the window is working, it could display too many records. Working
in a lower scale, the number of traces around the selected point will be less than working in a high
scale, therefore, work in a desired level of detail to obtain the desired number of records.

3Those labels have been defined in the paraver configuration file

36 CHAPTER 3. OPENMP INSTRUMENTATION. NAS BT BENCHMARK

What/Where Information =1 E3

=

TRACEFILE : NAS_BT_primary_misses pry Window MName : Global view

Object : THREAD 1.1.1
Click Time : B5336569 Time Units : Microseconds {us)

Sched. and Fork/Join - Duration : 7507

User Ewent at 63604904 Join (OMP) End

Sched. and ForksJoin - Duration : 5

User Event at 63604309 Parallel function VALLUE 0
User Ewent at 63604303 Parallel (OMP) End Ok
Running Duration : 7

User Ewent at 63604316 y_salve End

Running Duration : 2

User Event at 63604918 z_salve Begin

Running Duration : &

User Ewent at 63604924 Parallel function __mpdo_z_solve_1
User Ewent at 63604924 Parallel (OMP) DofSections

Sched. and ForksJoin - Duration : 377

A
=] J

. o 5 [o] '
7 Semantic |7 Events 7 Communication [1 Al the burst |I7 Text Mode| Repeat| Save as Text|

Figure 3.9: Textual information with labels. OpenMP Instrumentation.

3.5 Analyzing the parallel execution

The trace file shown in this chapter contains the real execution of the NAS BT application onto
the machine and through the Analyzer module we could study its behaviour.

Trace files with more information could be generated using the dynamic interposition, but in
our example we only want to see the application behaviour, so we generated a simple trace file.

Before begin the analysis, delete all the created windows or save them in a window configuration
file and delete them.

To delete a window close it by clicking its left or right corner, or select it like the current one
in the Window browser list and press the DELETE button. After delete all the windows, we
are going to load the Global view window that has bee saved in section How does it look ?
Visualization on 30. This window will be the base window for next sections.

To load it, go to the Configuration/Load menu option; then, select the global view.cfg file
name in the file selection box and press the OK button. The Global view window will be created.

3.5.1 Making a simple analysis

First, we are going to compute the percentage of time that a thread has been working along
the execution. This will give us an idea of load balancing, because if those percentages are very
different it could mean that some threads have more work than others because in our example all
the threads have taken part in all the parallelism spawning.

The easiest way to make this analysis is to take the window called Global view, clone it by
clicking the CLONE button in the Visualizer Module window. Then, go to the Semantic Module
and in the THREAD level select the Useful function to obtain an useful view of the trace file. Also,
rename the window Global view_c1 to Useful view name by changing its name in Name text
box in Visualizer Module window and apply the changes by clicking the APPLY button. window
will be redrawn using the new semantic function and the new name will be applied. Now, all the
states except the running state are showed as idle state.

Make an All trace analysis for this new window to obtain these percentages (to make the all
trace analysis, you have to click the analyzer icon in the Global Controller window and then click
the All trace button in the Analyzer window).

Figure 3.11 shows the percentage of running state in each processor, note that those values are
a number less to 1.0, and the variance between them is about 0.08 (Stdev value at the bottom
of the Avg Semantic Val column). This means that load is well balanced because all threads do
more or less the same amount of work along the application.

3.5. ANALYZING THE PARALLEL EXECUTION 37

Useful view

.
THREAD 1,1.1
’ L

THREAD 1,1,2 |I !

R
1
Il
I
| | | 1

e B 1 T 1
Bt 18 1T T 1 T A TR BN

THREAD 1.1.8

THREAD 1,1,3
) e
'

THREAD 1.1.4 " | | |

Time 173419835

==
REDRAW | J© Comm I Recw _I Send _IFlag |7 Color ﬁl il Ll 1' m ll

Figure 3.10: Useful view NAS BT. OpenMP Instrumentation.

Analyzer 9=l E3
Rawi Avg Semantic Wal | Average Burst | # Burst = | Stdev Burst = | Ok
THREAD 111 4 0.3 35154.75 4477 B60872.45 Save
THREAD 112 0.33 61354.79 2634 71029.94
THREAD 1.1.3 0.33 60307.66 2668 69523.20 -
THREAD 1.1.4 0.33 B1557.51 2634 71348.98 Useful view
THREAD 115 0.a3 £4235.55 2667 71207.93 Bl e &
THREAD 116 0.66 5623069 2664 69215.85 o
THREAD 1.1.7 075 43157.78 2641 61563.04)
THREAD 1.1.8 0.73 51215.28 2668 6330272 End Time :
173767468
Total 7.08 439274 22 23053 53606416 Duration :
Avarage 0.88 54909.28 288162 B7256.02 FE———
Maximurm 0.39 B4295.55 4477 7134898
Minimum 0.75 35154.75 2634 BOGTZ45
Stoew 0.08 B956.16 603,16 424827 all Window| Repeat
| A window| _ Repeat |
S — i Caleulate All
| Graph/Text Graph/Text | Graph/Text | GraphiTexd |

Figure 3.11: Simple analysis. OpenMP Instrumentation.

3.5.2 Parallelism profile

As the in previous example (see Message Passing Application (MPI) NAS LU Benchmark on
chapter 2), an interesting view is the parallelism profile of the application. It let us to see and
compute how many processors are working in parallel at the same time. A poor parallelism value
could mean a bad parallelization of the application but a big value could mean a good load balance.
This value has been computed in the previous analysis (see the Total value on Avg Semantic Val
in figure 3.11), there was an average of 7.08 threads executing work at same time, but we want to
show how the same value can be computed using a different view.

Select the window called Useful view like the current one in the Window browser, clone
it to obtain a cloned window called Useful view_cl. Then, disable the Flag button on the
displaying window to not paint the flag icons.

To see the profile, we have to change the object level representation for this window to the
PTASK level. To change it, click on the PTASK toggle button on the left of the Visualizer
Module (be sure that window Useful view_c1 is selected like the current one), disable the color
mode of the displaying window to obtain a non color visualization, and finally, change the Y max
scale to 8 because it will be the maximum profile value and its name to Parallelism profile?.

Apply the changes (click the Apply button) and the window will be redrawn with the execution
profile (figure 3.12).

This window shows the parallelism profile of the application. PTASK level adds the values

4To capture the windows we have changed the background and foreground (using the option OPTIONS/SYSTEM
CoLORS). If you work normally with Paraver without changing any color, foreground will be the white color and
background will be the black color.

38 CHAPTER 3. OPENMP INSTRUMENTATION. NAS BT BENCHMARK
Parallelism profile [[O1=]
Time I 1?2_!]]2_[5?55
REDRAW J© Comm I Recw _I3end _IFlag I Color ﬂ ﬂ LI ﬂl ﬂl M

Figure 3.12: Parallelism profile view. OpenMP Instrumentation.

returned from the previous level, the level adds all the values from the useful view where the
PTASK level adds all the threads that are in a working state (value 1). Note that during the
execution, the parallelism value is high. Make a zoom to see it in detail.

Also, copy the window limits of the parallelism profile zoomed window (Parallelism pro-
file_z1) to the Useful view window (to copy them, select the Parallelism profile z1 window like
the current, press the COPY VALUES button in the Visualizer Module window, and select the source
window (Useful view) by clicking its name in the Window browser; the limits will be copied) to

compare the two windows (figure 3.13).

Parallelism profile_z1 M[=] B3
T [[[[[
H H H H H

FTASK 1

Initial time

GIBSL523 us

Final time

70543593 us

Duration

635070 us

t t t
63914139 FO049630 70185121

—T—

t t
70320613 TO4T6104

Time F0545528

J J|

REDRAW J7 Comm I Recy I Send _IFlag I Color

« <] > mw

Useful view

THREAD 1.1.6
THREAD 1.1.7

THREAD 1,1,8

70545528

I JE

REDRAW J7 Comm I Recw _I Send _IFlag I~ Color

« 4] o wl»]

Figure 3.13: Parallelism profile zoom. OpenMP Instrumentation.

Figure 3.13 is a zoom made in the execution body of the application. Note how between
maximum parallelism zones (8 threads doing work at the same time) the value goes to one until

the last thread finishes the work.

3.6. IDENTIFYING LOOP ITERATIONS AND FUNCTIONS. 39

Using the Analyzer Module we can compute the average number of threads doing work in
parallel only making an All trace analysis for the Parallelism profile window. The result is
showed in the Avg Semantic Val function (figure 3.14).

Analyzer J[=] E3
Row Avwg Semantic Val | Average Burst | # Burst = | Stdew Burst = | Ok
A
PTASK 1 7.08 414557 41807 1944390 Save
Tatal 7.08 414557 41807 1544390 -
Average 7.08 414557 41807 1544390 Parallelism profile
Maximum 7.08 414557 41807 1544390 Bagin Time
Minimum 7.08 414557 41807 1544390 0
Stdey 0 0 0 0
End Time :
173767466
Duration :
17376746
All Window| Repeat
A
JE—
= = I Calculate &l
98 war | Graph/Test Graph/Text | Graph/Text | Graph/Text |

Figure 3.14: Profile analysis. OpenMP Instrumentation.

Note, that the result is 7.08. The maximum or utopic value is 8 because we have only 8 threads
but in parallel applications this value can’t be obtained because ever there are synchronizations,
overhead code, bad cache behaviour, latency to access the memory, ...

Before proceed with next points, save those created windows in a window configuration file
and delete them. Next points will load previous saved configuration files.

3.6 Identifying loop iterations and functions.

As we explained in section 3.1 the trace file has information about when the thread goes into one
of the five main functions and when goes out. This information has been recorded for the master
thread because the parallelism is spawned within this functions, so only the master thread goes
into this functions. This information has been encoded by event types where there is a event type
for each function, and their values can be 1 (entry to the function) and 0 (exit).

The next points explain how different modules can be combined to identify the loop iterations
and each function.

3.6.1 Identifying loop iterations.

The NAS BT benchmark has a main loop that calls five functions (see What the trace is 7 A
brief description. on page 25). These five functions are repeatedly executed.

The dynamic instrumentation package has traced the entries and exits to each of these five
functions and coded them by USER EVENTS (see table 3.7 on page 40). The entries and exits to
these functions only have been traced by the master thread (parallelism is spawned within those
functions) so only THREAD 1.1.1 has these USER EVENTS.

We are going to create a window where entries and exits to these five functions will be showed
with different colors, so iterations could be detected.

First, load the global_view.cfg window configuration file to load the previous saved window.
Clone it to obtain the window called Global view_c1 (remember that to clone a window you
have to press the CLONE button in the Visualizer Module window).

To obtain the desired visualization we have to be in mind how entries/exits has been coded
(see table 3.7 on page 40). Each function has been coded by an user event type. There is an
events type traced at the end of the function (with value 1) and other at the exit (with value 0);
the interval between functions (sequential code between parallel regions) is insignificant because
it is very small.

We have to solve the next question : How different modules can be combined to obtain
a visualization where functions will be painted using different colors ?

40 CHAPTER 3. OPENMP INSTRUMENTATION. NAS BT BENCHMARK

Events window I [=] E3 s Mnm T [.IC1]
Filtering Events Global view_c1 =
COMMUNICATION
Color Type Label Value Label
I7 Logical _{ Physical
Select only 75" ronooong X solve 4 :' E"“ ! ,
the first F 5 700000D y_solve 4 e PARTNERS
F 5 70000002 2sole . From Al
thread r..5. 70000003 sa Select the main
(THREAD 1.1.1) o e E loop event functions. w. it
¥ Campite. e o
B TR R T . o Al
r— Se, Messaces
Set All Types| Lnset All Types Set All Yalues| Unset All Values Tag Sl
Aand o Or Ve
Objects] Fill the divider - e |’—-,— @
owe: TRt value in textbox @ T D)
I THREAD 11.2 Name : | THREAD 14.2 USER EVENTS ; / Click the question mark
JTHREAD 113 Name: |THREAD 1.1 Global view_c1 Select the equal button to raise the Filtering
e event type function i
I THREAD 114 Name : | THREAD 1.1.4 COMPOSE 2 Parameters’ A and v Or Events window.
Dwmevl 7000000
- THREAD 115 Name : | THREAD 1.1.5 a4 Semantic Module [-] vee | A = ﬂ
—— Global view_cl =
I THREAD 118 Nape. | THREAD 1.1.6 o | om
of: ok
COMPOSE FLNCTIONS
A THREAD 117 Nape ITHHEADW 17 — _
COMPOSE 1 Asls
JATHREAD 118 name ,W Select the MOd_+l ‘
compose function 0
A '
Fill objects that wil be sel/unsel, A N
-
A "
Select Unselect @ .’. .
. '
- .
ok | selectanl | unselectal Click to u‘nselem '
all the objects 5 .
Moty Names | saveNames | Loashames |
HREAD Last EviType @
" Cllck the Leve! button 7’3\(— Select the
ofaul
', to raise the objects window Last Evt Type
0
Q
v Level | Window Browser | Values | Time Urits Tracefile
+ PTASK G Namel Igentiiying loop iterationd .|, Mi =
TASK. ; § il i i
v -0t | ga7a04 94 7 Ml Modify the window name
4 THREAD + Second
¥ minmax | 9 1 and APPLY the changes.
+ CcPU Hour
Apply --"'O‘;i'e'ﬁ'/'é'\?-';'eunl Colars | Delete | Copy values | Craate | Clone | Events | ok |

Figure 3.15: Identifying loop iterarions. OpenMP Instrumentation.

To solve it, first take as the current window the Global view_c1 window. Raise the OBJECT
WINDOW by clicking the LEVEL button in the Visualizer Module window (step 1 in figure 3.15)
and unselect all thread objects except the THREAD 1.1.1 (step 2 and 3). Why ? Because only
master thread has marked these entries and exits.

Now, we have to filter all the events except the desired events, so raise the Filter Module, select
the equal function in user event type menu (step 4), raise the filtering events window by clicking
the question mark button (step 5) and select only the event types referring to the five main loop
functions (compute_rhs, x_solve, y_solve, z_solve, add) like step 6.

The next step is to select how information will be extracted. We have filtered only the desired
user events but : how will the information be extracted ?

We are going to play with user the event types, note that each function have a different event
type so we can obtain a different value for each function. Raise the Semantic Module and select at
thread level the Last Evt Type function (step 7). To obtain a small value select at COMPOSE 2
level the function Mod—+1 function (step 8) with a divider value of 70000000 (step 9). the table
7?7 shows how values will be converted.

Function name | Event Type | Mod+1 (divider: 70000000) |

compute_rhs 70000005 6
x_solve 70000000 1
y-solve 70000001 2
z-solve 70000002 3
add 70000003 4

Table 3.7: Semantic Value returned by Last Evt Type + (Mod+1). OpenMP Instrumentation.

3.6. IDENTIFYING LOOP ITERATIONS AND FUNCTIONS. 41

Finally, change the window name to Identifying loop iterations and apply the changes by
clicking the APPLY button (step 10). The window will be redrawn.

Identifying loop iterations [_ O]

' i '
THREAD 1,1,1 .
H M A Initial time

I B3654523 us

Final time

Tme | // ~— 172724865 Iim39733 e

e— |
Drurati
REDRAW | Cumy(_l Send [T Flag I~ Color “« M M ﬂl LI %
2065210 us

Diuration

I 682048 us

s
Identifying loop iterations_z1 = assssssssssssssssssssesss _—
THREAD 1.1.1
Initial time
I 70716247 us
- 7192753 ~
| | N Final time
REDR&W | I comm Mﬂenu Frag Fooolor 44| 4| | [pp| N \ |?1593235 s

/

Iuentifying loop iterations_z1_z2 [_[O]

compute_rhs 1X_solve 'yfso\ve i z_solve iadd
' ' ! '

THREAD 1,1,1 . ‘ H / ; / H ‘

71537201
I 1

REDRAW J7 Comm _i Recy I Send J7 Flag = Color ﬂl il LI ﬂl ﬂl LI

Titne

Figure 3.16: Identifying loop iterations window. OpenMP Instrumentation.

Each window will be painted with a different color (see figure 3.16). Make zooms like figure
3.16 until obtain only one iteration.

The window which contains only one iteration of the loop will be saved to load it in next
sections. Therefore, change its name to Loop iteration and save it in loop_iteration.cfg file
name.

3.6.2 Analyzing the five main functions.
Analyzing how many time has been within compute_rhs function.

The NAS BT application structure events let us to make an analysis to compute how much time
the application has been within those functions. A very simple trick with the events let us to
compute those values. Let’s go to see how it can be computed.

First, select Identifying loop iterations window like the current. QOur goal is to create a
window where only the execution of compute_rhs function will be showed as running state, the
rest of the functions have to be showed as idle state (value 0).

Remember that compute_rhs entries and exits have been coded by an event type where its
value at the entry is 1 and its event value at the exit is 0. Thus, selecting a visualization that
works with the event values will give us the desired visualization.

Raise the Semantic module, select the As Is function in COMPOSE 2 (step 1 in figure 3.17)
and select the Last Evt Val function at thread level (step 2).

Go to the Filter module and select only the compute_rhs event type, the rest have to be
filtered (step 3).

Finally, change its name to Inside compute_rhs and apply the changes (click the Apply
button, step 4). As a result we obtain a window like figure 3.18 where the master thread is in a

42 CHAPTER 3. OPENMP INSTRUMENTATION. NAS BT BENCHMARK

Events window [_ O[] Filter Module [_[O[x]
o Identifying loop iterations
Filtering Events Identifying loop iterations Py
Color — Type Label Yalue Label COMMUNICATION
[9 BI0U000T REdUCIGn MoK (aadress WRIiusgreny 4 r 0 End
L | Fhi |
L5 TOODDDOD s solve 5 1 Begin e
4 5 70000001 y_solve PARTMERS
a2 g 70000002 z_solve From al
F 5 70000003 add
¥ 5 70000004 exact_rhs J A and « Or
5 70000005 compute_rhs .
g : To Al
i =
H MESSAGES
Set Al Typest‘ Unset All Types Set all Valuesl Unset All ¥alues Ok
: —I ‘ Tag Al =
B ~
: W
: 4 afidy, + Or
~
Semantic Module [_] S
Identifying loop iterations Slze All™ %

; p—
COMPOSE FUNCTIONS USER EVENTS Y e
COMPOSE 1 As s = Type = 4 70000005 E
Select only the @ iowposez asi | |: Selectthe Asls A e

+ compose function
compute_rhs event J
- PROCESS/RESOURCE MODEL value M ?
e e PR Zy
EEEN E =
Ok |
Sh
sdEy o
{ THREAD i Select the Last
5 / Evt Val function
Ok | Default |
Visualizer Module] [_ O[]
Level | Window Browser | Values | Time Units | Tracefile
+ FTASK : Namel Inside compute_thd ... | - “ Micro. A arimary i @
AR X-Scale | 347534.94 < el
o~ i))
U voomss 5 [15 B PO —— Modify the window name
~ CFU e < HE and APPLY the changes.
Apply |Openfcmse[Calors | Delete | Copy values | Create | Clone | Events | Ok |

Figure 3.17: Selecting function compute_rhs. OpenMP Instrumentation.

working state when it is within the compute_rhs function, and in a non working state when he
is out.

Inside compute_rhs

THREAD 1,1,1

173072400
Time

JE
REDRAW 7 Comm I Recv i Send [T Flag [T Color ﬂ il ﬂ 1' 2' ﬂ

Figure 3.18: compute rhs function. OpenMP Instrumentation.

To compute how much time where the application has been executing this function, make an
All trace analysis for this window and the Average Semantic Val function give this percentage,
a value of 0.30. It means that the 30% of the execution time has been executing the compute_rhs
function.

Furthermore, we could obtain the average duration of each execution (Average Burst), how
many times has been executed (# Burst) and the standard desviation between execution times
(Stdev Burst). Note, that the average time of each computerhs call is 255974.98 us (256
milliseconds), it has been executed 202 time and the standard desviation between execution times
has been 10291.07 us (10 milliseconds).

3.6. IDENTIFYING LOOP ITERATIONS AND FUNCTIONS. 43

Analyzer J[=] E3
Row Avwg Semantic Val | Average Burst | # Burst = | Stdew Burst = | Ok
3
THREAD 111 0.30 255974 96 20z 10291.07 Save
Tatal 0.30 255974 96 202 10291.07 -
Average 0.30 255974 96 202 10291.07 Inside compute_rhs
Maximum 0.30 255974 96 202 10291.07 Bagin Time
Minimum 0.30 255974 96 202 10291.07 0
Stdey 0 0 0 0
End Time :
173767466
Duration :
17376746
All Window| Repeat
¥
JE—
= = I Calculate &l
98 war | Graph/Test Graph/Text | Graph/Text | Graph/Text |

Figure 3.19: compute_rhs analysis. OpenMP Instrumentation.

The same process can be done for the other four functions, table 3.8 shows the resulting
percentages :

Function Percentage
compute_rhs_ | 0.30 (30 %)
x_solve_ 0.19 (19 %)
y-solve_ 0.19 (19 %)
z_solve._ 0.27 (27 %)
add. 0.04 (4 %)

Table 3.8: Time within a function. OpenMP Instrumentation.

Note, that compute_rhs function and z_solve execution times are greater than others. Adding
these percentatges we can conclude that these five functions are the 99 % of the execution time.

Analyzing compute_rhs parallel structure

The trace file contains information about NAS BT structure. Furthermore, it contains information
about functions structure (parallel code within them have been marked by USER EVENTS), so we
can make a view to show how functions execute its parallel code.

We are going to create a set of windows to show the compute_rhs structure (this function
have different parallel regions, one parallel region and four parallel loops).

First, select the window called Inside compute_rhs as the current and zoom it until only one
execution of compute_rhs will be displayed (like figure 3.20). You should try to fill a complete
call within the window limits (when window has been created, rename it to Inside one call of
compute_rhs).

Inside one call of compute_ths

THREAD 1.1.1

70332452
I =

REDRAW 7 Comm _{Recv _iSend |7 Flag [T Color ﬂ il ﬂ ﬂ ﬂl ﬂ

Titne

Figure 3.20: Only one call. OpenMP Instrumentation.

Now we are going to create a window where parallel functions will be displayed using a gradient
color. In the paraver configuration files, gradient color names have been renamed to the parallel
function names. Therefore, when we click in the next gradient visualization its function name will
be displayed.

44 CHAPTER 3. OPENMP INSTRUMENTATION. NAS BT BENCHMARK

Since only master thread has the parallel function event type (see its definition in table 3.5 on
page 29) we should create a window where only master thread will be displayed.

Take the window called Inside one call of compute_rhs as the current and clone it. Then, go
to the filter module and filter all the event types except the parallel function event. At THREAD
level in Semantic Module there should be select the Last Evt Val function. Raise the Colors
window by clicking the COLOR button, and select the gradient visualization by clicking the Gradient
Mode toggle button and change the Y-scale, Y min scale to 0 and Y max scale to 19 (the maximum
parallel function event value is 19). Finally, change its name (to Parallel functions inside
compute_rhs) and apply the changes by clicking the APPLY button. The window will be redrawn.

Figure 3.21 shows the resulting gradient visualization of parallel functions, clicking by the
function the Textual module will give each function name.

Also, copy the window limits to the Gloval view window (press the COPY VALUES button
and click the Global view window in the Window browser) to see the parallel execution within
compute_rhs function (figure 3.21).

Inside one call of compute_rhs

THREAD 4,1.1

70992452
I J

REDRAW 7 Comm I Recy I Send [T Flag 7 Colar ﬁl LI LI 1' 2' LI

Parallel functions inside compute_rhs

Titne

THREAD 4,1.1

-
" 70992452 ~
Time o= ‘- .
e a1 [N

-~ - + + .
. REDRAW {_(le I Rec¥ I Send J7 Flag '™ Cal Ml 4["»| M| 1
" amm el; =0l ag' olor _I _I 1J _I _I _I -~
,] 1

.
P

__mpregion_compute_rhs_1 ,' __mpdo_compute_rhs_2] __mpdo_compute_rhs_4
~ ‘ ' " .
~ 1 4
e . _mpdo_co:npute_rhs_l.l . __mpdo_compute_rhs_3 R
o N ' " R4

=
| |
[]
| |
|

sl
|
§|
]
P
L
]
- n

70992452
| JE

REDRAW 7 Comm I Recy I Send [T Flag 7 Colar ﬁl LI LI 1' 2' LI

Figure 3.21: Only one call. OpenMP Instrumentation.
Synchronize different windows by copying its values is very useful in a way to compare different
kind of displayed information from the same trace file.
3.7 Showing benchmark data cache misses.

The two provided trace files contain information about cache misses. As we explained in What
is the trace ? A brief description section (see page 25) this information has been coded using
user events (see table 3.6 on page 29).

3.7. SHOWING BENCHMARK DATA CACHE MISSES. 45

In this section we are going to explain how this information could be extracted using the
different paraver modules. We only are going to create a visualization profile of primary data
cache misses (trace file NAS_BT_primary-misses.prv) but the same visualization could be done
with secondary data cache misses (trace file NAS_BT_secondary-misses.prv), window configuration
files has been supplied to obtain the same visualization.

3.7.1 Showing data cache misses profile

We are going to create a window which will display the primary data cache misses and we are
going to explain how to identify the different regions with have bad cache behaviour.

You shouldn’t have any window, so first we are going to load the Global view window saved
in previous sections. Go to the CONFIGURATION menu option and load the configuration window
that has been saved with the global trace file view (file global_view.cfg); the window will be created.

When this window has been created, clone it to obtain the Global view_c1 window.

Creating data cache misses profile

Primary data cache misses have been coded in a user event type where their values are the number
of cache misses done from previous read to current read (within previous interval); thus, to create
the primary data cache misses visualization the semantic module has to work with user event
values.

Raise the Semantic Module window and the Filter window, clicking onto the Semantic

icon| [|and the Filter icon on the Global Controller window.

Take the Semantic Module window, go to the THREAD pop up sub menu, and select the
function called Next Evt Val (step 1 in figure 3.22). This function makes that the semantic
module will work with event traces, and the semantic values passed to the upper levels will be
their event values (in our selected function the value of the next event).

Events window B ES
Filtering Events Global view_c1
Color Type Label valug Label
F 3 40000012 Tracing £ " 0 End
4 7 42000003 Primary instruction cache misses r 1 Begin Filter Module [-[51x]
] T aZ000028 Frimary daia caone misses J Global view_c1
F 7000000 PArAIel (OFAFY .
4 27 B000DODZ WWarksharing (OMP) COMMUNICATION
4 F 60000003 Block (MF) T et
a 2 60000005 Bartier (OMP) 7]
PARTMNERS
{ 4+
Frofi Al
St All Types| Unset All Types| Set All Values| Unset All Values ok
7 4 4 And + O
{ Select the primary data cache ‘Q LT
@ misses event type by cliking S MEEHEES
. . .
its toggle button. It will appear ’Téfi M =
in the filter textbox. 4 and o 01 @
-~
Global view_c1 s Avy Ii
COMPOSE FUNCTIONS @ ——s———— |7 Click the question mark
COMPOSE 1 mle | | NS e R Vi <= putton to raise the Filtering
i inznuunzs i i
COMPOSE 2 Asls Select the equal + Events window.
event type function “ And - Or
PROCESS/RESOURCE MODEL Value Al ﬂ
TN Sifging e
z Ok
T
"
L]
]
]
K L]
L]
~ "
Default ‘e ¥

Y e B GHERE

Select the Next Evt Val thread

semantic function to work with ﬂﬂl‘mmg‘

the event value.

Figure 3.22: Showing data cache misses profile (I). OpenMP Instrumentation.

46 CHAPTER 3. OPENMP INSTRUMENTATION.

NAS BT BENCHMARK

Why Next Evt Val 7 We use the Next Evt Val because it returns the value of the next
event, thus, it returns the number of primary data cache misses occurred in the interval that
will be drawn (for more information see the SEMANTIC MODULE chapter on Paraver Reference
Manual).

Also, we have to filter all the events except the Primary data cache misses (event type
42000025) because the trace file has more than one event type and we aren’t interested in the
rest event type values. To filter it, go to the USER EVENTS section in the Filter Module window,
select the symbol ”="" in the TYPE pop up sub menu (step 2) and click the question mark button
to raise the Events window (step 3). In the Events window select the primary data cache misses
(event type 42000025) by enabling its toggle button (step 4). Through the Semantic and Filter
modules, we have selected the semantic values that will be passed to the Representation Module.
These semantic values are the event values for event type 42000025 (Primary data cache misses).
These values could be a in a large range, so the color visualization won’t work well.

We have to select a non-color visualization where we should select the correct Y scale (Y
min should be the lowest value -value 0- and Y max should be the highest value -it has to be
computed-). To compute the maximum we could use the Max Semantic Val function in the
Analyzer Module. To compute it, click the Analyzer button (step 5 in figure 3.23) and select

this function in a column of the Analyzer window (step 6). Then, click the All trace button (step
7) to compute it (figure 3.23).

Analyzer =] B
@ Ro o SemAni Mal....s w‘ #Receives s | #Events | = |
e
i THREAD 111 || 1328250.29 2091088 0 3654 Save
Select the Max Semantic Val THREAD 1.1.2 1362243.91 2103433 1 3654
X : THREAD 1.1.3 1342753.92 2102478 0 3654 -
function to compute the maximum THREAD 11.4 136686910 2102311 0 3654 Global view_c1
THREAD 1.1.5 139171427 2101173 0 3654
Begin T
value. THREAD 1.1.6 1308643.09 2102675 0 3654 99‘”u ne
THREAD 1.1.7 1002636.01 1838855 0 3654
THREAD 1.1.8 103396541 1836331 0 3654 End Time
173767468
. Total 10143156.01 16280954 0 29232 Duration
@ Compute the analysis Average 126789450 203511925 i 3654 173767468
: Wiasimum 139171427 2103433 0 3654
for all the tracefile Wlinimum 1002636.01 1838855 0 3654
. Stdew 144577.92 11335160 0 0 Al Window| Repeat
e = 1 Calculate All
I | Graph/Text | GraphiText GraphiText Graph/Text |
Global view c1 M=
THREAD 1,1,1

A 11
THRERD 1.2 T S A [T AT
D .3 N [T R TR T
THRERD &4 T R T A R TYITHY
: = |
TR T T T
[T TR T T BT T TR

THREAD 1.1

i Fill the result in the
! | | i maximum Y scale.
NI | \i\l\\\\\\\ | i

THREAD 1.1

THREAD 1.1,8

Time

173072400
I
REDRAY | 7 Comm { Recy I Send [Flag o 4 v [» 0 E“Ch the analyzer
utton.
Disable the color visualization ‘ H
and change its name. i
Level | Window Browser | Values

~ PTASK

| Time Urits | Traceflle

Namal Primary data cache missed | > micro. | EESHENNIET)

« TASK

A
.
L
.
)
.
)
1
)
L}
)
3
.
[}
.
)
1
.
.
.
[}
.
)
1
)
L
)
L
)
)
.
)
.
)

X-Seale | 34753494 : A . S
THREAD ’_'_ ~ Second RN Giobal Controlier -]
¥ minmax | o 2103433 =
- 2l EEER
------------------ » apply | Open/Clase Colars Delate

Copy values | Create |
Finally, apply the changes by

Clong | Events Ok | ﬂli‘ﬂmmg
clicking the apply button.

Figure 3.23: Showing data cache misses profile (II). OpenMP Instrumentation.

We have computed the maximum semantic value for primary data cache misses. Fill this value
in the Y max text box in the Visualizer Module window (step 8), and also, change the name of the
window to Primary data cache misses (fill it in the Name text box in the Visualizer Module,
step 9).

3.7. SHOWING BENCHMARK DATA CACHE MISSES. 47

Then disable the toggle Color button in the displaying window to obtain a non-color visual-
ization (step 9) and click the Apply button to apply the changes (step 10). The window will
be redrawn with the new parameters (figure 3.24). The resulting window shows the primary data
cache misses profile for each thread where the Y-scale for each thread goes from 0 to the maximum
value.

Primary data cache misses [[olx]

THREAD 1,1, 1.

A AN T TR AN

THREAD 1,1,2 e e —————— |

e 1.1« TR RN RN MO MR T ANTY
BN 110001 EEO0T T EONEAAR LR

N TR TTRCOTCO

(UCLHOCEIEEONT LIV

BT T T TR T T T I T
NN LN AR, RN T B TR

THREAD 1,1.4 3
THREAD 1.1.5 4

THREAD 1.1.6 4

34753494 69864523 194608017 129261611

Time 172377330

J |
REDRAW I7 Comm _f Recy _I Send |7 Flag _I Color ﬂl il LI ﬂ m LI

Figure 3.24: Data cache misses profile. OpenMP Instrumentation.

Make a zoom to see the details (figure 3.25). Note, that data cache misses are periodic,
corresponding to the loop iterations. Data cache misses are showed for each thread, seeing them
at PTASK level we could see the data cache misses done by all the application.

Primary data cache misses_z1
THREAD 4,1,1 3

Em
o]

THREAD 1,1,2

THREAD 1,1,3

THREAD 1.1.4

THREAD 1,1,5

THREAD 1,1,6

THREAD 1,1,7

|
THREAD 4,1, 5 <Moot Hott et okttt ot o e bt b

B6784148
J 1

REDRAY I Comm i Recy _I Send I7 Flag I Color ﬁl il LI ﬂl ﬂl LI

Time

Figure 3.25: Data cache misses profile. OpenMP Instrumentation.

Another interesting view could be a visualization of the data cache misses done by a loop
iteration. In previous sections, we created a window which contains one loop iteration (saved in
file loop_iteration.cfg) so visualization can be done easily.

First, load the window configuration file loop_iteration.cfg which contains the loop iteration.
To see the data cache misses in an iteration copy the window limits of the Loop iteration window
to the zoomed window. The data cache misses profile zoom will be redrawn with the data cache
misses done in an iteration (figure 3.26)

3.7.2 Showing data cache misses in function of time

The previous profile shows the number of primary data cache misses. In the previous section,
intervals are painted with the number of cache misses occurred within. Another interesting profile
could be a visualization of the primary data cache misses in function of time.

Long intervals could have a big number of data cache misses, if we take a smaller interval its
value could be smaller. However, if we compute the data cache misses in function of time, the
smaller interval could have a number of cache misses per time greater than the longer interval.

48 CHAPTER 3. OPENMP INSTRUMENTATION. NAS BT BENCHMARK

Loop iteration

71010839

Time 71397200
i

REDRAW 7 Comm i Recy I Send |7 Flag 7 Color ﬁl il LI 1‘ 2' LI

THREAD 1.1,449° [° 7 7F FF o PP P FF
THREAD 1.1.2 ”’_?"‘_’_‘”"_"’_E_“”*L ; L’ |~r—‘—w—
THREAD 1,1,3 ""_':"”—"_"*’_"*’—E”‘J’ i L L
THREAD 1,1,4 ’v—%—P—P—PP—PP—i—PHL 3 L ‘ =
THREAD 1.1.5 "’—3‘—"_‘—"_‘—"_?_L‘=l' 3 = 3 " L_p
THREAD 1.1.6 f-r—|:-—r—r—'=—=—=—i—=—v=-J= | ee 3 l ;L_p
THREAD 1.1.7 ”_"5—"""‘—"‘—’_3_“—“; 3 " H= 3=|~ - L_u
THREAD 1.1.8 "'_‘-:r“—"“—""‘-"_i“-"i" : L{ ELDL [

T T + + t
2863674 2881969 2899950 29179925 Z9FEO04Z
23496931

I =1

REDRAW 7 Camm i Recy I Send |7 Flag .1 Color ﬁl il LI 1‘ 2' LI

&

Time

Figure 3.26: Data cache misses in an iteration. OpenMP Instrumentation.

This type of view will give to the user information about which intervals have the big number
of data cache misses per time.

Creating data cache misses profile in function of time

Our goal is obtain a view which displays as values the number of primary data cache misses in
function of time. There is a semantic function at thread level which will extract from the trace
file these values, the Avg Next Evt Val.

Take the Primary data cache misses window as the current (select its name in Window
browser) and clone it (press the CLONE button) to obtain the window called Primary data cache
misses_cl.

Take the Semantic Module window, go to the THREAD pop up sub menu, and select the
function called Avg Next Evt Val (step 1 in figure 3.27). This function makes that the semantic
module will work with event traces, and the semantic values passed to the upper levels will be their
event values in function of the duration.

Why Avg Next Evt Val ? We use the Next Fut Val because it returns the value of the
next event so it returns the number of primary data cache misses occurred in the interval that will
be drawn. Also, it will take as a duration of the interval the time between the current event and
the next event (for more information see the SEMANTIC MODULE chapter on Paraver Reference
Manual).

We have to compute the correct Y scale because the semantic function has changed and the scale
could change (Y min should be the lowest value -value 0- and Y max should be the highest value).
To compute the maximum we could use the Analyzer Module with function Max Semantic Val.
To compute it, click the Analyzer button (step 2 in figure 3.27) and select this function in a
column of the Analyzer window after click onto the Analyzer icon (step 3). Then, click the All
trace button (step 4) and the result will be displayed (figure 3.27) after computing the analysis.
Fill this value in the Y max text box in the Visualizer Module window (step 5), and also, change
the name of the window to Primary data cache misses (fill it in the Name text box in the
Visualizer Module, step 6).

Then disable the toggle Color button in the displaying window to obtain a non-color visual-
ization (step 6) and click the Apply button to apply the changes (step 7). The window will be
redrawn with the new parameters (figure 3.28) and we can see the values of the primary data
cache misses profile in function of time for each thread.

Make a zoom to see the details (figure 3.29). Note that profile is different from profile when

3.7. SHOWING BENCHMARK DATA CACHE MISSES. 49

Analyzer [_[O]

|
@ B i k| o Semartic Val . | #Receives | #Events | = |
THREAD 1.1.1 = G291.04 1307545 o 3654 Save
. THREAD 1.1.2 8304.08 1310127 o 3654
Select the Max Semantic Val THREAD 113 630614 14555.64 0 3654 -
i i THREAD 1.1.4 8301.05 1444226 o 3654 imary data cache misses_(
function to compute the maximum THREAD 1.1.5 8311.00 14532.73 [3654, Begin Time
Value_ THREAD 1.16 8303.34 14451.00 o 3654 0
THREAD 1.1.7 7291.80 14635.76 0 3654
THREAD 118 7282.15 14463.80] 654 Bt e
17377460
Total 64400.60 113z58.12 o 29232 Duration
i Average 8050.08 14157.26 [3654, 175767468
CompUIe the an_aIySIS Maximum 8311.00 1463578 o 3654
for all the tracefile Winimurn 7291.80 1307545 il 3854
Stdev. N 43772 @zn 05 il 0 All Window| Repeat
2 i Calculate Al
| Graph/Text GraphiTent | Graph/Text | Graph/Texst |
Primary tiata cache misses_c1 M= £

A A A T AN T e e e
2 maximum Y scale.

THRERD 1.1.2 bttt Tkt
AT T T AN T O @

THRERD £.1.1 Pritiary data cache tisses_cl

COMFOSE FUNCTIONS

COMPOSE 1 Asls
COMPOSE 2 Asls

PROCESS/RESOURCE MODEL

THRERD 1,13
eene o RN TR ORI RO O T
AN AN AN TN CTT T TR NI

THeERD 11,5
SOOI 111111000 L
N A T

THRERD 1.1.7
(] RN AT O R 1AM AN AN AR AN R A
THRERD 1.1,8 I

4785494 eva0ines 104608017 i3oatsit
— 172377330 Primary data cache misst outing
J Ee R —
§ Avg Next Evt Val P THREAD Aug Newxt Evt Val
REDRAW | = Comm fRecy i Send F7 Flag 1 Colar | <] | o] > u] { Hy el P Vg Newt But Vel "I

; Facmvl 1000
_ ok Default T
@ Change its name. T @

Select the Avg Next Evt Val thread

Visualizer Module [O]

Level Window Browser Iii Values 4 Time units | Tracefile semantic function to work with

the next event value in
function of time

PV = BT piniary missesr

~ PTASK

Narme | Prim. cache misses per

~ Mill

STER X-Srale | 347534.94 4 ‘ .
“ THREAD ~ Second e o Global Cc ntroller [-]
&
- s [vHW 5 . el o g @
Click the Analyzer
@ ,,,,,,,,,,,,,,,,, > apply | OpendClnse Colors Delete Cnpyvaluésl Create | Clone | Events O S “ > i g icon 4

Finally, apply the changes by
clicking the apply button.

Figure 3.27: Showing data cache misses profile in function of time. OpenMP Instrumentation.

Primary data cache misses per ms [_ O[]
THRERD 1.1,1 4
T _W
{ CRRNE TN P TION * ANELN L DNA TRNAN ™ NN, W] ™ 1T NAF AT (NARARFY TR TR JARY T

THRERD 1,1,3

THRERD 1.1.4

THRERD 1.1.5

| MRRFTINAARR [N RRARF TI0N TINNALIF CIRRAF " TANNANEN [T TIRRNF VU CTTINAR TRNR NAAANY TRRFTAN A5NAY]

L4140 LT O L T 0 0 L U 1L
La P R o R o 0 oo, o SR RO " R AR T (Rt

PPALIT i L4 T a0 bl a0 T L LT (U LY i L LT

347E3494 GABR4523 A04E03017 139361511

THRERD 1.1.6

THRERD 1,1,7

THRERD 1.1,8

172724865
Time

1
7 Comm _f Recy _J Send |7 Flag . Color ﬂ ﬂ LI ﬂl ﬂl M

Figure 3.28: Data cache misses profile in function of time. OpenMP Instrumentation.

only data cache misses values are displayed. Regions where in a small time make many primary
data cache misses are showed with a greater value because they are showed in function of time.
Remember, that FACTOR selected was 1000 so we are computing the number of primary data cache
misses per millisecond, if we select a value of 1 we compute the data cache misses per microsecond,

As previous section, an interesting view could be show the data cache misses done by an
iteration. To show it, copy the window limits of the Loop iteration window to the previous
zoomed window. As result we obtain figure 3.30.

Compare these window with the primary data cache misses visualization in an iteration. Re-
gions were there were many cache misses are visualized when working in function of time, but new

30 CHAPTER 3. OPENMP INSTRUMENTATION. NAS BT BENCHMARK

Primary data cache misses per ms_z1 [_ O]

THREAD 1,1,1
THREAD 1,1,2 4™~~~ 55 O W
THREAD 4,1,3 47 0=~ Foe :

;
THREAD 4.1,4 {7 - By
THREAD 1,1,5 30 o PPy
THREAD L.1.6

v
THREAD 1,1,7 {E ok e

e LI bl Ll Lkl (LI il
THREAD 4,1,3 5 T

71354441 73183642 TEOLZEFE Tagd1804 TEETOIEE

791830392
I |

REDRAW J© Comm I Recw _I3end |7 Flag I Color ﬂ ﬂ LI ﬂl ﬂl M

Time

Figure 3.29: Data cache misses profile in function of time. OpenMP Instrumentation.

Loop iteration

THREAD 1,1,1

71

Time 71397200
i

REDRAW 7 Comm i Recy I Send |7 Flag 7 Color ﬁl il LI 1‘ 2' LI

Primary data cache misses per ms_z1 [_[Of=]
o = y ==

THREAD 1.1.4 37

THREAD 1.1.2 3
THREAD 1,1,3 3
THREAD 1,1,4 7
THREAD 1.1.5 7
THREAD 1.1.6 3
THREAD 1.1.7 3

THREAD 1.1.5 3

t t t t t
70B38IB0 71010889 71182828 71354767 TAGEET06
71537200
I JE

REDRAW 7 Camm i Recy I Send |7 Flag .1 Color ﬁl il LI 1‘ 2' LI

Time

Figure 3.30: Data cache misses in function of time in an iteration. OpenMP Instrumentation.

regions have been appeared. Those regions are sections of code where there were a lot of cache
misses in a little interval.

3.8 Window configuration files supplied for this chapter.

We have been supplied some window configuration files to load predefined window which shows
different aspects of the trace file.

These files can be found in directory tutorial_traces/omp_nas_bt/cfg_examples in tutorial traces
package.

o primary_data_cache_misses_PTASK.cfg for trace file NAS_BT _primary_misses.prv. It
shows the primary data cache misses profile done by all threads (at PTASK level). This
window configuration file will create four windows : a general view, a zoom of the general
view, an iteration and primary data cache misses profile in an iteration.

e primary_data_cache_misses_per-ms_PTASK.cfg for trace file NAS_BT _primary_misses.prv.
It shows the primary data cache misses per milliseconds profile done by all threads (at
PTASK level). This window configuration file will create four windows : a general view, a

3.8.

WINDOW CONFIGURATION FILES SUPPLIED FOR THIS CHAPTER. 51

zoom of the general view, an iteration and primary data cache misses per milliseconds profile
in an iteration.

secondary_data_cache_misses_profile.cfg for trace file NAS_BT _secondary_misses.prv. It
shows the secondary data cache misses profile. This window configuration file will create
four windows : a general view, a zoom of the general view, an iteration view and secondary
data cache misses profile in an iteration.

secondary-data_cache_misses_per_ms_profile.cfg for trace file NAS_BT _secondary_misses.prv.
It shows the secondary data cache misses per millisecond profile. This window configuration

file will create four windows : a general view, a zoom of the general view, an iteration view
and secondary data cache misses per millisecond profile in an iteration.

secondary-data_cache_misses_profile.cfg for trace file NAS_BT _secondary_misses.prv. It
shows the secondary data cache misses profile done by all the threads (at PTASK level).
This window configuration file will create four windows : a general view, a zoom of the
general view, an iteration view and secondary data cache misses profile in an iteration.

secondary-data_cache_misses_per_ms_profile.cfg for trace file NAS_BT _secondary_misses.prv.
It shows the secondary data cache misses per millisecond profile done by all the threads (at
PTASK level). This window configuration file will create four windows : a general view, a
zoom of the general view, an iteration view and secondary data cache misses per millisecond
profile in an iteration.

Chapter 4

Hardware counters profile.
NAS BT Benchmark

4.1 What is the trace 7 A brief Description.

Our third example is composed by a set of trace files. Each trace file is the output file of a tool
called infoPerfex which extracts the hardware counters over a Silicon Graphics Origin 2000 machine
during the execution of the user application.

These trace files contain the values extracted from the hardware counters during the execution
of the sequential application of the NAS BT. We have a set of trace files because not all the
hardware counters can be read at the same time, and we did some executions reading the different
hardware counters to obtain some examples.

During the benchmark execution, infoPerfex! reads the hardware counters more or less each
100 milliseconds (ms.) and codes them like user events, where the event type is the number of a
hardware counter and the event value is its value in each reading. Thus, each trace file contains
each 100 ms some user events representing the read to the hardware counters.

There are events common to all the trace files corresponding to hardware counters that ever can
be read, but usually they don’t appear because its read values were 0 (the paraver configuration
file for each trace file has defined their labels).

4.1.1 Defined USER EVENTS
Hardware Counter events.

This example is composed by seven trace files where different hardware counters has been traced.
Fach hardware counter has been coded into a different event type where each read contains the
value from last read until now. For example, each user event value of the event type which encodes
the primary data cache misses is the number of cache misses occurred from the last read until this
read.

Table 4.1 shows for each trace file which specific events includes. Some of these trace files that
refers to instruction counters (trace files like floating_point_instructions.prv) have an issued or a
graduated value. Although they are counting the same type of instructions there is a big difference
between them :

e the issued value contains the number of instructions taken from the input queue and assigned
to a functional unit for processing. Note, that some instructions can be issued more than
once before they are completed, and some can be issued and then discarded (speculative
execution). As a result, issued instructions reflect the amount of the work the CPU does.

linformation about infoPerfex tool can be found at URL http://www.cepba.upc.es/tools/paraver/paraver.htm

53

54 CHAPTER 4. HARDWARE COUNTERS PROFILE. NAS BT BENCHMARK

Tracefile name Event Type | Label
floating_point_instructions.prv 17 Graduated Instructions.

21 Graduated floating instructions.
primary_cache_misses.prv 9 Primary instruction cache misses.

25 Primary data cache misses.
secondary _cache_misses.prv 10 Secondary instruction cache misses.

26 Secondary data cache misses.
tlb_misses.prv 13 External invalidations.

23 TLB misses.
load_instructions.prv 2 Issued loads.

18 Graduated loads
store_instructions.prv 3 Issued stores.

19 Graduated stores
branch_instructions.prv 6 Decoded branches.

24 Mispredicted branches.

Table 4.1: Specific Event Types. Hardware counters profile.

¢ the graduated instructions reflect the effective work towards the completion of the algo-
rithm.

NAS BT application structure events.

Some user events have been used to mark the entry and exit of the main NAS BT functions. These
type of user events has been traced manually.

The NAS BT benchmark has a main loop that calls five functions. The five functions are
repeatedly executed. The main NAS BT loop looks like :

DO I=1, N
compute_rhs
X_solve
y_solve
Z_solve
add

END DO

Table 4.2 shows these event types and their labels. Note that the five main loop functions has
been marked with different event types where their values mark the entry and exit to the function.
Also, initialization routines have been marked (initialize and ezact_rhs). Also, the beginning of
an iteration and the ending has been marked with an event type.

| Event Type | Label | Values |
70000 compute_rhs 1 Begin
70001 x_solve 0 End
70002 y-solve
70003 z_solve
70004 add
70005 exact_rhs
70006 initialize
80000 Loop iteration (adi.f)

Table 4.2: Main loop function event types. Hardware counters profile.

We will see this structure in the analysis of our instrumentation example. The NAS BT
benchmark could be executed with a different amount of data and iterations. For our working

4.2. VISUALIZATION OF GRADUATED FLOATING POINT INSTRUCTIONS. 35

example we used a class known as ”class A”, which do around 200 iterations to the loop which
braces the five functions.

Class = A
Size = 64x 64x 64
Iterations = 200

On this example, we wouldn’t make an analysis for all these trace files, we only want to show how
paraver could be used to analyze the performance of an application.

First, launch Paraver and load the trace file called floating_point_instructions.prv that can
be found in directory tutorial_traces/hwc_nas_bt in tutorial traces package?.

When the trace file has been loaded, paraver asks for load its paraver configuration file (float-
ing_point_instructions.pcf) which contains information about the user event labels explained in
the previous section. Load it by clicking the LOAD button.

4.2 Visualization of Graduated floating point instructions.

Our first hardware counters visualization will be the graduated floating point instructions profile.
Remember that traces used in this chapter are composed only by USER EVENTS so we have to
work with semantic functions that work with user event traces.

Press the visualizer button in the Global Controler window and when the Visualizer
Module window appears, press the Create button. This will create a displaying window named
win_1 where there is painted only the axis. Before, pressing the Play button enable the Flag
toggle button in the displaying window to display the flags.

Then, press the Play button on the displaying window to obtain the visualization. This occurs
because the trace file doesn’t have state records and by default, paraver works with the useful view
which works with working and non working states. Therefore, we have to work with event records.

1073741822

Titne

J |
REDRAW 7 Comm _IRecv _iSend _IFlag [T Calor ﬂ il m ﬂ ﬂl M

Figure 4.1: Working with states in infoPerfex traces. Hardware counters profile.

Now, we are going to select some parameters and properties of the displaying window to obtain
a display visualization where we will see the values that has been taken for the Graduated
Floating Instructions painted as a time line.

Raise the Semantic Module window and the Filter window, clicking onto the Semantic

icon f and the Filter icon on the Global Controler window.

Take the Semantic Module window, go to the THREAD pop up sub menu, and select the
function called Next Evt Val (step 1 in figure 4.2). This function makes that the semantic
module will work with event traces, and the semantic values passed to the Representation Module
will be their event values.

Why Next Evt Val ? We use the Next Evt Val because it returns the value of the next event
so it returns the number of floating point instructions occurred in the interval that will be drawn
(for more information see the SEMANTIC MODULE chapter on Paraver Reference Manual).

2traces are available in Documentation tool section at URL http://www.cepba.upc.es/tools/paraver/paraver.htm

96 CHAPTER 4. HARDWARE COUNTERS PROFILE. NAS BT BENCHMARK

Also, we have to filter all the event except the Graduated Floating Point Instructions (event
type 21) because the trace file has more than one event type and we aren’t interested in the other
event type values. To filter it, go to the USER EVENTS section in the Filter Module window, select
the symbol ”="" in the TYPE pop up sub menu and click the question mark button to raise the
Events window (step 3). In the Events window select the graduated floating point instructions
(event type 21) by enabling its toggle button (step 4).

Events window [—[o1]
Filtering Events win_1 Filter Module o]
win_1
Color Type Value Label
B 15 o COMMUNICATION
i G J I” Logical I Physical
F RSl SySte
I z 33 Byles read PARTMERE
a 2 34 Write system calls B Al
a2 35 Byles wiitten o —_‘I
a 2 36 Voluntary context switch i A And OF
= I—
To Al
Set Al Types| Unset All Types! Set All Values| Unset All Values ok m‘ﬁ
@ Tag Al
' e
. Vi v o
Select the graduated floating win_t s SV el L l— \
oint event type by clikin e — —*—.—I S .
-p type by " 9 COMPOSE FUNCTIONS ~—— “s, | 7 Click the question mark
its toggle button. Itwillappear CEEEEECEEE) (£ fe, USER EVENTS & button to raise the Filterin
i i COMPOSET msis | | 00000 NT=S e e
in the filter textbox. SE B Il Events window o
CoMPOSEZ asis | Select the equal et L= ents ow.
event type function
PROCESS/RESOURCE MODEL vaue Al - ﬂ
SETIN fuki e
Y

F B -
i THREAD Next Bvtval | [‘e
i .

A
Ok Default .

@ - (ilv‘llaj Controller [_]
Select the Next Evt Val thread jU . ﬂ @I 8‘ Q

semantic function to work with ﬂl il zl M M EI

the event value.

Figure 4.2: Selecting the "floating instructions” event (I). Hardware counters profile.

Through the Semantic and Filter modules, we have selected the semantic values that will be
passed to the Representation Module. These semantic values are the event values for event type
21 (Graduated floating point instructions). These values could be a in a large range, so the color
visualization won’t work well.

We have to select a non-color visualization where we should select the correct Y scale (Y min
should be the lowest value -value 0- and Y max should be the highest value). To compute the
maximum we could use the Analyzer Module with function Max Semantic Val. To compute it,
select this function in a column of the Analyzer window after click onto the Analyzer icon (step 5
in figure 4.3). Then, click the All trace button (step 6) and the result will be displayed (figure
4.3) after computing the analysis.

We have computed the maximum semantic value for graduated floating point instructions. Fill
this value in the Y max text box in the Visualizer Module window (step 7), and also, change the
name of the window to Graduated floating instructions (fill it in the Name text box in the
Visualizer Module) to difference this window through the windows that will be created.

Then disable the toggle Color button in the displaying window to obtain a non-color visu-
alization (step 8) and click the Apply button to apply the changes (step 9). The window will
be redrawn with the new parameters (figure 4.4) and we can see the values of the floating point
instructions hardware counter as a time line3.

Figure 4.4 shows the profile of the counter graduated floating point instructions. Through this
visualization, we could detect when performance goes up or down. To see the details you can

3To capture the windows we have changed the background and foreground (using the option OPTIONS/SYSTEM
CoLORS). If you work normally with Paraver without changing any color, foreground will be the white color and
background will be the black color.

4.2. VISUALIZATION OF GRADUATED FLOATING POINT INSTRUCTIONS.

Analyzer
@ e

[_[o]x]
4 Senantc.al. ... #Receives i | #Events | o
- 1
i crU = 3343650.75 17302078 0 11231 save
Select the Max Semantic Val :
. . Total 9343650.75 17302078 a 11231
function to compute the maximum Average 934365075 17302078 i 11231 i)
Msimum 9343650.75 17303078 0 11231
Value Minimum 9343650.75 TYBDZSEWE a 11231 EEH‘HDTWE
Stdev 0 0 i 0]
g End Time
H 1133231103
: H Durat
Compute the analysis ; ot 10s
for all the tracefile
Al Window| Repeat
- 1 Calculate Al
41 frxer Graph/Text | GrapfiText GraphiText Graph/Text |
win_1

57

Time

i Fill the result in the
1073741822 :
I
REDRAW | 7 Comm i Recy I Send [T Flag |7 Color

{ maximum Y scale.
«l < > w » |
Disable the color visualization

and change its name.

Visualizer Module

[O[]
Level window Browser values i | Tmeunis | Tracefile

o PTASK Namel‘,afmtmoam etdond | 4 Micro, | IR e

SUEIS w-Scale | z266452.21 il

- THRE4D Second

¥ min,max | o 17302078

P < Hour

Apply GpeniClose Colors Doteto | copy values | Greate | cione | Events ok
4

A

‘ RS Giobal Gontroller -1
A HOEEE

Finally, apply the changes by
clicking the apply button.

«<r»ug

Figure 4.3: Selecting the ”floating instructions” event (II). Hardware counters profile.

Hoating Point Instructions Profile

CPU 1

[- O]
i i i i
22664‘6221 45555‘3904 67‘393‘3663 90659‘4934
S 1073741822
I Jo |
REDRAW I Comm _iRecy _ISend |7 Flag _i Color ﬂ il ﬂ ﬂ ﬂl M

Figure 4.4: Graduated floating point resulting window. Hardware counters profile.

make a zoom like figure 4.5.

The floating point instruction profile is periodic because NAS BT is composed by a loop which
braces five functions that are executed many times.

Hoating Point Instructions Profile_z1

[- O]
cRU 1 | i | i |
49037‘1561 50039‘1769 52039‘1975 540452191 56041‘2383
S 566015246
I JE |
REDRAW I Comm _iRecy _ISend |7 Flag _i Color ﬂ il ﬂ ﬂ ﬂl M

Figure 4.5: Graduated floating instr. zoomed window. Hardware counters profile.

98 CHAPTER 4. HARDWARE COUNTERS PROFILE. NAS BT BENCHMARK

We could use the Analyzer module to compute the MFlops of the application execution. To
compute it, make an analysis for all the trace file computing the Avg Semantic Val function.
In the trace file there is the number of floating point instructions that has been executed each
more or less 100 milliseconds, the Avg Semantic Val function will give the average number of
floating point instructions each 100 milliseconds and to obtain the MFlops we have to multiply
this number by 10. In our example, the Avg Semantic Val is 9343650.75 flops per 100 ms (see
figure 4.3) and multiplying it by 10 we obtain 93436507.5 flops per second (more or less 93.5
MFlops).

4.3 Visualization of data cache misses.

We could analyze the data misses that our application execution has been done. We are going to
make three windows, one for primary data cache misses, other for secondary data cache misses
and finally, the TLB misses that the application has been done.

4.3.1 Primary data cache misses.

To obtain a displaying window with a profile of the primary data cache misses we could do the
same as we did to obtain the graduated floating instructions profile. First, we have to load the
trace file called primary_cache_misses.prv which contains the hardware counter which provides
this information. This hardware counter has been coded in the event type 25 (see Table 4.1).

First, create a new window, enable its toggle button and play it (like we have done with floating
point instructions).

Go to the Semantic Module window and in the THREAD pop up sub menu, select the
function called Next Evt Val to work with event values. Go to the Filter Module window and
filter all the events except the event type 25 (in the Type pop up menu, select the =" symbol
and select the event type 25).

Remember, that you have to select the correct Y scale which includes all the event values of
the trace file. To find this value, compute the Max Semantic Val for all the trace file (All trace
button) and fill this value in the Y max scale. Also, you should change the window name to
difference the windows (for example change to Primary data cache misses).

Finally, disable the color mode and apply the changes (click onto the APPLY button) to show
our primary data misses window.

Primary data cache misses [_ O[]

CRU 4

+ t+ + +
217215452 436602069 652818514 271032963

1073741522
Time

=
REDRAW J” Comm i Recw . Send [T Flag i Colar ﬂ il ﬂ 1' 2' ﬂ

Figure 4.6: Primary data misses window. Hardware counters profile.

Make a zoom to see the details, note how the primary data cache misses are periodic too.

4.3.2 Secondary data cache misses.

The process to obtain a displaying window with the secondary data misses is like the process to ob-
tain the primary data misses. First, you have to load the trace file called secondary_cache_misses.prv
which contains the secondary data cache misses counter. This counter has been coded in event
type 26 (see 4.1). By default, the new loaded trace file is selected as the current one.

The same steps than visualization of primary data cache misses should be done to obtain the
window but here we have to filter all the events except the event type 26 which contains the desired

4.3. VISUALIZATION OF DATA CACHE MISSES. 59

Primary data cache misses_z1 [O]

CPU 1

t t t t t
234138688 252142131 270145574 288149017 306152460

316534456
I =

REDRAW 7 Comm _{Recv _iSend |7 Flag _I Caolor ﬂ il ﬂ ﬂ ﬂl M

Titne

Figure 4.7: Primary data misses zoomed window. Hardware counters profile.
information. Also, a new Y scale should be computed, in this trace file the maximum value for the
secondary data cache misses is 208138; note, that this value is smaller than primary data misses.

Secondary data cache misses [_ O[]

CRU 4

+ t + +
211636633 4ZE3EI4BL 634909699 846546132

1053943354
Time

JE
REDRAW J” Comm i Recw . Send [T Flag i Colar ﬂ il ﬂ 1' 2' ﬂ

Figure 4.8: Secondary data misses window. Hardware counters profile.

As for the primary data cache misses, make a zoom to see the details. Note that the behavior
is the same the application has memory problems in certain points each iteration of the external
loop.

Secondary data cache misses_z1 [O]

CPU 1

t t t t t
233417936 252665618 272313299 291760980 311208662
316967734
I J

REDRAW 7 Comm _{Recv _iSend |7 Flag _I Caolor ﬂ il ﬂ ﬂ ﬂl M

Titne

Figure 4.9: Secondary data misses zoomed window. Hardware counters profile.

4.3.3 TLB data misses.

Finally, we could obtain a displaying window to see the TLB misses along the execution. You

have to load the trace file called tlb_misses.prv where the event type 23 contains these values.
Do the same process like but filtering all the events except the event type 23. The correct Y

scale in when we are displaying this value that we have computed should be the value 270635.

TLB misses [l B

CPU 1

216891524 433783048 E50674572 867566096

. 1073741822
Titne

J |
REDRAW 7 Comm _{Recv _iSend |7 Flag _I Caolor ﬂ il ﬂ ﬂ ﬂl M

Figure 4.10: TLB data misses window. Hardware counters profile.

60 CHAPTER 4. HARDWARE COUNTERS PROFILE. NAS BT BENCHMARK

The zoom will give us a better visualization of TLB misses.

TLB misses_z1 [_ O[]

CRU 1

2346B5482 260187204 266819125 281450947 297082769

303179176
I ==

REDRAW J” Comm _iRecy I Send [T Flag I Color ﬂl il LI 1' m ll

Titne

Figure 4.11: TLB data misses zoomed window. Hardware counters profile.

4.4 Instruction set used by the application

Through the hardware counters, we could analyze how many instructions the application has been
executing and the distribution of each type. We could extract information about the number of
loads, stores, branches and floating point instructions and detect what regions could have problems,
and where the performance goes down. These values could give us an information about what it
is happening during the execution and we could relate it with the values showed on the previous
section, for example we could relate with data misses during the application execution.

The process to obtain these displaying windows is the same than in the previous sections. You
have to load the trace file which has the desired event type to study (see table 4.1), filter it, and
select the desired limits to work with those event values.

Also, the Analyzer module lets us to compute things like how many instructions are executed
each time and how many of each type.

For example, we could obtain a window like figure 4.12 that shows the graduated load instruc-
tions (event type 18) during the execution of the trace file.

Graduated loads M=

THREAD 1.1.1

t t t t
229925227 462149706 692074333 922000160

1073741822

Titne

J |
REDRAW 7 Comm _{Recv _iSend |7 Flag _I Caolor ﬂ il ﬂ ﬂ ﬂl M

Figure 4.12: Graduated Loads. Hardware counters profile.

The average number of load instructions that the application has executed each second can
be computed with the Analyzer Module. We only have to make an analysis for all the trace file
and compute the Avg Semantic Val function. This value will be the average number of load
instructions executed each 100 ms, to obtain the average per seconds we only have to multiply
this value per 10.

The same analysis could be done for the graduated instructions, the graduated stores, the
graduated floating point instructions (see section 4.2) and decoded branches. Those results are
showed in table 4.3.

The table shows average number of instructions executed each second (Graduated instructions)
and the average number of instructions for the floating point, loads, stores and branches instruction
types. Adding these four types results an average of 219,937,317.1 instructions per second. If we
substract this value from the average number of instructions per second results a 9,754,764.3
instructions which are the average of aritmethical integer.

4.5. WINDOW CONFIGURATION FILES SUPPLIED FOR THIS CHAPTER. 61

Instruction Type Instructions per second

Graduated instr. 229,692,081.4 Instr. per second.

Graduated floating instr. | 97,436,507.5 Instr. per second.

Graduated loads 73,019,551.3 Instr. per second.
Graduated stores 47,750,960.2 Instr. per second.
Decoded branches 1,730,298.1 Instr. per second.

Table 4.3: Executed instructions. NAS BT BenchMark

4.5 Window configuration files supplied for this chapter.

We have been supplied some window configuration files to load predefined window which shows
different aspects of the trace file.

These files can be found in directory tutorial_traces/hwc_nas_bt/cfg_examples in tutorial traces
package.

o floating_point_instructions_in_an_iteration.cfq for trace file floating_point_instructions.prv.
It shows the floating point profile in an iteration where each of the five functions is painted
using a different color.

e primary_cache_misses_in_an_iteration.cfq for trace file primary_cache_misses.prv. It shows
the primary data cache misses profile in an iteration where each of the five functions is painted
using a different color.

o secondary-cache_misses_in_an_iteration.cfg for trace file secondary_cache_misses.prv. It
shows the secondary data cache misses profile in an iteration where each of the five functions
is painted using a different color.

o tlb_misses_in_an_iteration.cfg for trace file tlb_misses.prv. It shows the tlb misses profile
in an iteration where each of the five functions is painted using a different color.

Chapter 5

Multiprogrammed Executions.
Visualization and Analysis

5.1 What the trace is 7 A brief Description.

The last example is a trace file containing the physical processor allocation done by the operating
system during the execution of a workload composed by different parallel applications.

These traces have been collected by a tool called SCPUs! which collects information about
the processor allocation by sampling at a given time step. This tool runs simultaneously with the
workload collecting instantaneous machine status and generating a textual trace.

The workload has been executed in a Silicon Graphics Origin 2000 machine with 64 processors
running IRIX 6.5 in exclusive mode, therefore, the trace file shows the physical processor allocation
of IRIX operating system. The trace file generated by SCPUs tool contains the mapping of the
application threads of the workload execution to physical processors plus the process migrations
between processors (represented as communications). SCPUs tool maps the real execution traces
in a Paraver trace file to visualize and analyze the workload execution.

The SCPUs tool samples the system processor allocation at a given time step specified by
the user. To obtain our trace file we sampled more or less each 100 milliseconds so we are
supposing that between this interval the application has been running in the same processor (a
more exhaustive sampling could be done using the SCPUs tool). In each sample the SCPUs
tool saves which threads are in each physical processor, and when the workload finishes we have
the traces of where each application thread has been executed during the workload.

5.1.1 Workload description

The workload consists of six parallel applications (using old MP and new OpenMP directives)
requesting a different number of processors. Table 5.1 shows the number of processors requested
by each application.

Note that the number of requested processors by all the workload goes to 96, but the machine
only has 64 physical processors, there are more requested processors than available in the machine
so the operating system should distribute the resources between the applications. The trace file
shows the processor allocation that has been done by the IRIX operating system, but using these
kind of trace files different processor allocation policies can be studied.

5.1.2 Defined STATES

The workload is composed by different applications. These applications have been mapped to
states and all the threads within the application are painted using the same color. Table 5.1 shows

linformation about SCPUs tool can be found at URL http://www.cepba.upc.es/tools/paraver/paraver.htm

63

64CHAPTER 5. MULTIPROGRAMMED EXECUTIONS. VISUALIZATION AND ANALYSIS

the mapping between the states and each application in the workload.

State Value | Application Requested processors

0 Idle (processor isn’t working).

1 BT Application. 16 processors

2 Itomcatv Application. 16 processors

3 Swim Application. 16 processors

4 Turb3D Application. 24 processors

5 Hydro2D Application. 16 processors

6 Su2cor Application. 8 processors

Table 5.1: Mapping between application and states. Multiprogrammed executions

Mapping applications to state values will let to paint, using different colors, which application
is running in each physical processor.

5.1.3 Defined COMMUNICATIONS

The thread migrations between the different processors has been coded as communications because
a thread migration could be seen as a message from processor X to processor Y. The communication
tag is the number of application which makes the thread migration. No migration is stored if thread
is scheduled on the same processor than in its last run and only a color change will be displayed
if a different application begins to run in that processor.

The tag value lets to filter the communication made by a specific application during the work-
load and focus our study on one application filtering the rest (see Selecting one application section
on page 67).

5.2 How does it look : Visualization.

First, launch Paraver and load the trace file called scpus.prv that can be found in directory
tutorial_traces/scpus_workload in tutorial traces package?.

When trace file has been loaded, paraver asks for load its paraver configuration file (scpus.pcf).
Load it by clicking the LOAD button.

This file defines the mapping between states and applications, so the textual display tool will
give the application name for a specified color. Also, this file changes the default color palette
used by Paraver to differentiate the applications because the default palette has similar RGB color
for states 3, 4, 5 and 6 (the default configuration use them as blocking states so their are painted
with a similar red color).

The mapping between state values and applications could be seen in the COLORS WINDOW (see
figure 5.1) or clicking onto the trace file with the TEXT MODE enabled.

Idle |

0
1 BT Application
2

ltomcatw Application I

3 Swim Application

4 Turb3D Application I

Figure 5.1: Mapping between colors and applications. Multiprogrammed executions

2traces are available in Documentation tool section at URL http://www.cepba.upc.es/tools/paraver/paraver.htm

5.2. HOW DOES IT LOOK : VISUALIZATION. 65

To create the first view of the trace file, raise the Visualizer Module window by clicking onto
the visualizer module icon in the Global Controller window and press the CREATE button.
This will create a window with 64 rows at processor (CPU) level (one for each physical processor),
note that this window is bigger than the previous examples, so the number of windows that could
be created depends on the X Server memory.

Each row shows a physical processor, where the X-axis show which applications have been
running in each processor along the time.

The CREATE button has created a window were only the axis are painted. Just by pressing the
Play button, the trace file will be drawn in the displaying window (figure 5.2).

377

J
REDRAW 7 Comm i Recy i 3end i Flag 7 Color ﬁl il LI ﬂl ﬂl LI

Figure 5.2: Processor allocation trace file. Multiprogrammed executions

The displaying window shows the communications, they represent the process migrations be-
tween processors and in each row, using a different color, shows the applications running each
moment. Light blue color means that the processor is idle, at the end of the workload some pro-
cessors begin to stay in an idle state because some applications have finished and the rest did not
requested enough to use all the processors.

Note that during the workload execution there is a lot of process migrations and when ap-
plications begin to finish the operating system continues ordering migrations between processors.
However there are physical processors idle (there are less processors requested than the capacity
of the machine) and threads should stay in their processor.

Disable the communication lines to have a better visualization of the workload. To disable the
communications lines you should disable the toggle button coMM at the bottom of the displaying
window and change its name to Global view (to change it, you have to change the Name text
box and apply the changes). Without the communications lines we can see in which processors
the applications have been executed.

Make zooms to see in more detail the trace file and works the communication lines (process
migrations) work.

66 CHAPTER 5. MULTIPROGRAMMED EXECUTIONS. VISUALIZATION AND ANALYSIS

377

J |
REDRAW I i Comm I Recy _f Send _f Flag 7 Color ﬂl il LI 1' ﬂl LI

Figure 5.3: Processor allocation trace file (no migrations). Multiprogrammed executions

In next sections we are going to show how to collect statistics. We are going to collect statistics
like : the parallelism obtained by each application versus his requested number of processors, how
many time he has been executing in the same processor, how many process migrations has made
an application, ...

As example, we use the processor allocation made by the operating system but any user can
implement his/her own scheduler and study it using Paraver.

5.3 Study of a single application

One of the main improvements in Paraver is that it lets the user to select what he/she want to
study to collect statistics. Using the different modules a lot of information could be extracted in
different ways. For example, we could focus our study to all the workload or to one application.

In this section we are going to explain how Paraver can be used to focus our study to a single
application and collect some statistics for an application.

When an application is launched, it requests a number of processors that want to use, but
in a multiprogrammed environment there are other applications and not all the resources can
be assigned to it, the operating system must distribute those resources between the different
applications as well as possible.

Our workload request 96 processors distributed in different applications, but the machine only
has 64, we requested more processors than physical so processor allocation policy could affect
the workload execution time and the individual execution time for each application. A bad policy
where there is a lot of process migration or a bad application grouping could affect the performance
of the application.

For example, when using parallel applications usually there are many synchronization points
where threads have to wait the threads that haven’t finished their work yet. The scheduler must

5.3. STUDY OF A SINGLE APPLICATION 67

share the resources because if it gives more time to a thread that was waiting the rest than other
that has to finish their work, the application doesn’t go on.

Focussing our analysis to one application will give a visualization of where it has been executed,
how many migrations it has done, ... The next subsections will show a small analysis that can be
done when working with one application.

5.3.1 Selecting one application.

To obtain a visualization where only one application is displayed, take as the current window
the called window (Global view), go to the Semantic Module window and select at THREAD
level the function called Given State (step 1 in figure 5.4). Select only the Swim application
application by raising the DEFINED STATES window (to raise it, press the question mark button in
the window to select the given states, step 2) and select the Swim application state by clicking its
toggle button (step 3). Also, to make our study, we are only interested in the process migrations
made by this application and we want to filter the rest. The process migrations has been coded
as communications from processor X to processor Y and the communication tag gives the number
of application which makes the migration.

>

Filter Module [-[Of]
States windows [_[OIx] Global view
Defined States Global view VIS0
Thread Semantic Function: ~ Given State T
ogical ysical
Color State Label PARTNERS
F Raise the Defined Fon a [
BT Application States window by
cliking the question < fnd O
mark button. To Al
Hydro2D Application MESSAGES @
: Suzcor Application ; Ta
H g Al =
- Nt sinnet - Global view _I Select the
=) # And N Or tag 2
Set All States Unset all States ‘ ok COMPOSE FUNCTIONS g 5
Sel Al States| | Unset a1 States B e - o
~ i COMPOSE 1 Asls |
~ i —
o B
POSE 2 fsls o LSER EVENTS
3 e R I Y
- ROCESS/RESOURCE MODEL
Unselect all the states Given state Parameters” » o Y [0 56 4
and select only the Swim state value | 3 - vale Al ﬂ
application state by cliking 3 S ——
i . ok Defaut
its toggle button | eraut | - atng | ok
A
'
B 4 "
Change its name ; '
ok i Default '
_ L]
"
; .
Visualizer Module [[=] B3 @ Select the leen State '
Level | Window Browser | ., Values | Time units | Tracefile thread function. :
 PTASK _ Namel Bwim applicatior] < Micro. | ESEERIEE :
- "
CWBR X-Scale | 75572033 v Ml '
s THREAD #* Second 1]
¥ minmax | 0 15 '
~ GpU z - « Hour " - !
--.......__._ Global Controller [}
D=
Apply | Open/Close | Colors | Delste | Copy values | Create | Clone | Events ok | &lﬂ@lg‘g

RIS

@ Finally, apply the changes by
clicking the apply button.
Figure 5.4: Selecting one application. Multiprogrammed executions

To filter it, go to the Filter Module and in the TAG line, select the symbol =" and write a
3 in the text box next to the size pop up sub menu. This will filter all the process migrations (or
communications) except those made by Swim application (state value 3).

Finally, before redrawing the window, enable the communication lines to draw it in the dis-
playing window. As a result, we obtain a window like figure 5.5 where only one application is
painted. You can see where it has been executed and the process migrations that have been done
during the execution. Now, change its name to Swim application.

Figure 5.5 shows how the Swim application has been executed in all the processors in the
machine, the visualization shows all the migrations done by the application threads.

68CHAPTER 5. MULTIPROGRAMMED EXECUTIONS. VISUALIZATION AND ANALYSIS

W
IIIII!C l

377

J |
REDRAW I7 Comm I Recy _ISend _| Flag 7 Color ﬂl il LI 1' 2' LI

Figure 5.5: Swim application processor allocation. Multiprogrammed executions

5.3.2 Computing the number of process migrations and average execu-
tion time in each processor.

A first simple analysis can be done to compute the number of process migrations that the appli-
cation has been done and the average execution time in the different processors. To obtain the
processor migrations of the application we can use the functions which compute the number of
sends (# Sends). The Average Burst function computes the average execution time of the
application in each processor; the Stdev Burst function computes its standard deviation and the
Bursts function computes the number of times that it has been executed in that cpu.

To compute it make an All trace analysis for this window selecting the specified functions. As
a result we obtain the information for each processor plus some lines presenting the sum, average,
maximum and minimum values displayed.

The value for # Sends row shows the number of process migrations that this application has
done during the workload execution (1023 process migrations).

5.3.3 Parallelism profile for each application during the execution.

Another study that could be done is the analysis of the average number of processors on the
application has been executing during the workload versus the requested amount of processors.
This analysis can be computed for any application within the workload and we obtain if the
processor allocation used gives the number of processors requested by the application or on the
other hand, the application has to run with less processors than requested.

To make our analysis, select the window which shows the swim execution (Swim application)
and clone it to obtain an identical window. This window will be our working window to analyze
the profile. To obtain a visualization of the parallel profile of the application, first, we have to
change the Given state function to the In state function. The In state function returns the

5.3. STUDY OF A SINGLE APPLICATION 69

selected states as a working state (state value 3 is returned as 1). Therefore, select the In state
function at THREAD level, fill a 3 in its parameter window and redraw the window.

The new visualization draws a working state when the application is executed in a processor
and an idle state otherwise (remember, that previous visualization draws the state as is). To obtain
the profile, change the object representation level to PTASK level by selecting it in the Visualizer
window. Before, applying the changes disable the communication lines from the displaying window
and change the Y max scale to 16 (the application requested 16 processors so the maximum
value for a parallelism profile will be 16). The figure 5.6 shows the application profile® obtained
during the workload execution for Swim application after changing the scale and disabling the
communication lines. Also, two zooms have been done at the beginning and at the end of the
execution to select the initial and final points for the analysis.

Swin paralle]ism profile [_ O[]

FTASK 1

t + +
76.33 151,14 226,72 202.29

Time

REDRAW I Comm |

i Send 1 Flag

cor 4 4)]

\

Swin parallelism profile_z1 [-[O] Swin parallelism profile_z1.2 =] B3

PTASK 1 [VI,I/ i
331 6.59
16
B

FTASK 1

i t t t + t t t
5.84 13.12 16.¢ 147.63 154,34 161.04 167.75 17446
176
Time

I /T

I Comm _ Recy _| Send _I Flag _I Color ﬂ ﬂ LI ﬂ 2‘ ﬂ REDRAW i Comm I Recy I Send _{ Flag I Color ﬂ il ﬂ 1‘ ﬂ LI

Time

Figure 5.6: Profile zooms to make the analysis. Multiprogrammed executions

The profile visualization shows how sometimes the application runs with the requested proces-
sors but usually runs with less processors than requested. Also, the execution of the application
finishes in the middle of the workload so to compute things like average number of processors
where the application has been executing the ALL TRACE analysis doesn’t work well because ap-
plication finishes in the middle of the trace file, we should select the initial and final points of the
application.

Make the analysis selecting the first point at the beginning of the trace file (window called
Swim Execution profile_z1) and the second point at the ending of the trace file Swim Exe-
cution profile_z2) to fill all the Swim execution in the analysis limits.The Avg Semantic Val
function gives the average number of processors during the execution. Note, that the result for
Swim application is an average of 11.13 processors; application has requested 16.

Another results could be seen in this analysis, for example the Average Burst gives the
average time that the application has been running with the same number of processors (in our
example 212 milliseconds), the # Burst tells the number of times that the application has changed
the number of processors so probably some threads hasn’t been running (it has change 808 the
number of processors).

To compute the analysis for the rest of applications you should take care because only until
the swim finalization (is the first application which finishes their execution) there are all the

3Also, to capture the windows we have changed the background and foreground (using the option OP-
TIONS/SYSTEM COLORS). If you work normally with Paraver without changing any color, foreground will be the
white color and background will be the black color.

T0CHAPTER 5. MULTIPROGRAMMED EXECUTIONS. VISUALIZATION AND ANALYSIS

application running with 96 requested processors, when some applications begins to finish, the
rest that remains in execution have more free resources, so its requested processor number could
be satisfied by the operating system (see figure ??) and its parallelism increases.

Turh3D parallelism profile JH[=] B3

PTASKE 1

t t t t
76,32 181,14 226,72 202,29

Time g7

=
REDRAW I Comm I Recy _ISend _IFlag _I Color ﬂl il Ll 1' m LI

Figure 5.7: Turb3D profile. Multiprogrammed executions

Figure 5.7 shows the Turb3D parallelism profile, it has requested 24 threads but only an
average of 12 has been executed when all the workload applications are running (so requested
load is about 96 processors). At the end, when some applications have finished (thus, requested
number is lower), its parallelism value is increased to 24.

Hydroz D parallelism profile [_ O]

PTRSK 1

t t t u
76.33 151,14 226,72 302,29

Time]

J |
- Comm _i Recw _I3Send _iFlag _I Color ﬂ ﬂ LI ﬂl ﬂl M

Figure 5.8: Hydro2D profile. Multiprogrammed executions

The Hydro2D (figure 5.8) has requested 16 threads but in its profile we can see that only
an average of 10 threads are running at same time when all applications are active. As Turd3D
application, when the requested lod goes down, its number of threads executing in parallel is
increased.

