Vi

CEPBA

Paraver

Version 3.1

Parallel Program Visualization
and Analysis tool

REFERENCE MANUAL

October 2001

Contents

1 Introduction 1
2 Installation 7
3 Where does Paraver come from? 11
4 Paraver Object Model 13
4.1 Paraver Process Model e 14
4.2 Paraver Resouce Model e 16

5 Paraver Internal Structure 19
5.1 Representation Module L. 19
5.1.1 Visualization module 20

5.1.2 Analyzer module 20

5.2 Semantic Module e e e e e e 20
5.3 Filter Module e e e e e e e e e 21

6 Main View 23
6.1 Main Menu window L L 24
6.1.1 Tracefilesmenu 24

6.1.2 Configuration menuo Lo 27

6.1.3 Optionsmenu L e 28

6.1.4 Helpmenu e 30

6.2 Global Controller window 31

7 Filter Module 33
7.1 Introduction e e e e e e e 33
7.2 Filter module window 33
7.2.1 Filtering communications area.o, 33

7.2.2 Filtering user events area. 34

7.3 Selecting event types/values using the Events window 35

8 Semantic Module 37
8.1 How does the Semantic Module work ? 37
8.1.1 Working with Process model objects 38

8.1.2 Working with Resource model objects 40

8.1.3 Composelevels e 41

81.4 Derived views L 41

8.2 Semantic window L e e e e e e 42
8.3 Semantic functions e e e e e 44
8.3.1 Thread functions e e e 45

8.3.2 TASK, APPL and WORKLOAD functions 53

8.3.3 CPU, NODE and SYSTEM functions 55

il CONTENTS
8.3.4 Compose functions e 57

84 Derived views L e e e e e e 60

9 Displaying Windows 63
9.1 Control Area e e e e 64
9.1.1 Redraw button L 64

9.1.2 TimeLine e e e 64

9.1.3 Local Orders i i e 64

9.1.4 Displaying Attributes 66

9.2 Window PopUp Menu e 68
9.3 Window Configuration Files L o 71
9.3.1 Saving paraver windows e e e e e 72

9.3.2 Loading paraver windows Lo e 73

10 Representation Module 75
10.1 Visualizer Module L 76
10.1.1 Visualizer Module window. 76

10.1.2 Visualizer Module window buttons 78

10.1.3 Selecting objects that won’t be displayed. Level button 80

10.1.4 Working with windows o 83

10.2 Textual Module. What/where information., 85
10.2.1 Text area o o v i vt e e e e e e e e 86

10.2.2 Control Area e e 86

10.2.3 Alltheburst e 87

10.24 Text Mode L 88

10.2.5 Repeat button 90

10.2.6 Save as Text button 90

10.3 Analyzer Module 91
10.3.1 Analyzer Module 1D 91

10.3.2 Analyzer Module 2D L 99

A Environment Variables 109

B Binary Trace Format 111

List of Figures

1.1

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18

7.1
7.2
7.3
7.4

8.1
8.2
8.3
8.4
8.5
8.6

Paraver Configuration File 5
The DiP Environment Structure 11
Paraver object model 13
Paraver process model L oL 14
Hierarchical composition of levels 15
Mapping of the MPI programming model 16
Mapping of the OpenMP+MPI programming model 16
Paraver resource model Ll 17
Hierarchical composition of levels, 17
Paraver Internal Structure 19
Paraver Screenshot L 23
Main Menu e e e e e e e e 24
Tracefiles menu L. e e e e e 24
Loading a tracefile 25
Loading a tracefile 25
Unloading Tracefile 26
Tracefilesmenu L e 26
General Information window Lo o 27
Quitting Paraver 27
Configuration menul 27
Options menu L e e e e e e e e 28
System Colors window e 28
Paraver scrolling Speed L 29
Paraver Search e 29
Example: Selecting the correct look back value 30
Help menu options L . L e 30
Paraver Version L L 30
Global Controler window L 31
Filtericon e e e e e e e e e e 33
Filter Module window e e e 34
Filter Object Selection window 34
Events window e e e e e 35
Paraver process model L 38
Semantic Value computed at APPLlevel 39
Semantic Value computed at Task and Thread levels. 39
Semantic Value computed at WORKLOAD level 39
Paraver resource model 40
Semantic Value computed at NODE and CPU levels 40

ii

8.7

8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25
8.26
8.27
8.28
8.29
8.30
8.31
8.32
8.33
8.34
8.35
8.36
8.37
8.38
8.39
8.40
8.41
8.42
8.43

9.1
9.2
9.3
94
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16

LIST OF FIGURES

Semantic Value computed at SYSTEM level 41
COMPOSE levels o e e e e e e e e e e 41
Combining two semantic values into anew one. 42
Semantic icon e e e e e e e 42
Semantic Module window L e 43
Semantic Module window L 44
Thread level functions 45
Useful function e e e e 46
State Sign functiono 46
State AsIsfunction 46
Given state parameters window L. Lo 47
In State parameters window e 47
In State vs Given Stateo 47
Not In State parameters window 48
Defined States window e 48
Example of Last Event Val oo oo 49
Example of Next Event Val 0. 50
Example of Avg Next Event Val 51
Given Event Value parameters window 51
In Event Value parameters window 52
Example of Int. Between Evto o 52
Task level functions e 53
Thread i parameters window L oo 54
Appl level functionso 54
Node level functions e e 54
Cpu level functions L 55
Active Thd Val and Active Thd Val Sign selection values windows 56
Node level functions e e e e 56
System level functions 57
Compose level functionso 57
Mod window e 58
Is In Range/Select Range windows 58
Stacked Val function behaviour L . 59
In stacked Val function behaviour, 60
Nesting level function behaviour oL 0oL 0oL 60
Semantic window format for a derived window.00 L. 61
Obtainning a derived metrics from TLB misses and Loads completed 61
A displaying windowo 63
Time Line : Scalebar e 64
Local Orders : Tape recorder buttons 64
GotoTimeor User Event 65
Window without Color: Function display 66
User Event Flags 67
Communication Lines e 67
Send and Receive Icons 68
Window PopUp Menu e 68
Scale Menu i e e e e e e e 69
Rescale to fit example e e 69
Warning message e 70
Color Type Menu ot et e e e e e 70
Gradient visualization 70
Save Asmenu option e e e e e e 71
Configuration menu e e 71

LIST OF FIGURES iii

9.17 Window files are used to save created windows toafile. 72
9.18 Window to save the paraver windows. 72
9.19 Window to save the paraver windows. 74
10.1 Paraver Internal Structure oL L 75
10.2 Representation Module functions at GlobalControler window 76
10.3 Visualizer icon L 76
10.4 Visualizer window (Visualizer Module) 7
10.5 Creating a derived window. Visualizer module. 78
10.6 Events window e e e e 79
10.7 Color Menu: ”Code” and ”Gradient” colors 80
10.8 Level button: Objects window o it 81
10.9 Objects window: Selecting/unselecting objects and changing its name 82
10.10Timing icon o o o e e e e e 83
10.11Paraver Timing Utility 83
10.12Zooming icon L. e e e e e e e 83
10.13Zooming utility : Source windowo oL 84
10.14Zooming utility : Zoomed window resulto 84
10.15Global Controller Buttons L 85
10.16Paraver What/Where Information 85
10.17What/Where Control Area oot vt ittt 86
10.18Window at lower scale 87
10.19What/Where with all the burst disabled 88
10.20What/Where with all the burst enabled 88
10.21Paraver What/Where Information shown as numbers 88
10.22Paraver What/Where Information shown as labels 89
10.23Analyzer icons: (a) Analyzer icon 1D (left) (b) Analyzer icon 2D (right) 91
10.24Analyzer window Lo e e e 91
10.25Text mode vs. graphical mode 92
10.26Cursor when selecting a region to make an analysis 94
10.27Computing the analysis L 94
10.28 Average Burst Parameters window L. 96
10.29# Burst Parameters windowo oL 97
10.30Stdev Burst Parameters windowo 97
10.31Time with Sem Val Parameters window 98
10.32Analyzer 2D icono e 99
10.33Analyzer 2D window L. e e e 100
10.340bject x Object analysis L e 102
10.350bject x Semantic Value analysis L. 103
10.36Save As Format selection format L. 106
10.37Cursor when selecting a region to make an analysis 107

10.38Computing the analysis L 108

iv

LIST OF FIGURES

Chapter 1

Introduction

Paraver is a flexible parallel program visualization and analysis tool based on an easy-to-use Motif
GUI. Paraver was developed responding to the basic need of having a qualitative global perception
of the application behaviour by visual inspection and then to be able to focus on the detailed
quantitative analysis of the problems. Paraver provides a large amount of information on the
behaviour of an application. This information directly improves the decisions on whether and
where to invert the programming effort to optimize an application. The result is a reduction of
the development time as well as the minimization of the hardware resources required for it.
Some Paraver features are the support for :

e Detailed quantitative analysis of program performance

e Concurrent comparative analysis of multiple traces

Fast analysis of very large traces

Mixed support for message passing and shared memory (networks of SMPs)
e Easy personalization of the semantics of the visualized information

One of the main features of Paraver is the flexibility to represent traces coming from different
environments. Traces are composed of state transitions, events and communications with an
associated timestamp. These three elements can be used to build traces that capture the behaviour
along time of very different kinds of systems. The Paraver distribution includes, either in its own
distribution or as an additional package, the following instrumentation tools:

1. Sequential application tracing: it is included in the Paraver distribution. It can be used to
trace the value of certain variables, procedure invocations, ... in a sequential program.

2. Parallel application tracing: a set of modules are optionally available to capture the activity
of parallel applications using shared—memory (OpenMP directives), message—passing (MPI
library) paradigms, or a combination of them.

3. System activity tracing in a multiprogrammed environment: an application to trace processor
allocations and migrations is optionally available in the Paraver distribution.

4. System activity tracing in a multiprogrammed environment: an application to trace processor
allocations and migrations is optionally available in the Paraver distribution.

This document includes a detailed description of the Paraver programming model and trace
format. This allows Paraver users to develop their own tracing facilities according to their own
interests and requirements. The possibilities offered by the visualization, semantic and quantitative
analyzer modules are powerful enough allowing users to analyze and understand the behaviour

2 CHAPTER 1. INTRODUCTION

of the traced system. Paraver also allows the customization of some of its parts as well as the
plug—in of new functionalities.

So expressive power, flexibility and the capability of efficiently handling large traces are key
features addressed in the design of Paraver. The clear and modular structure of Paraver plays a
significant role towards achieving these targets. Let us briefly describe the key design philosophy
behind these points.

Views

Paraver offers a minimal set of views on a trace. The philosophy behind the design was that
different types of views should be supported if they provide qualitatively different analysis types
of information. Frequently, visualization tools tend to offer many different views of the parallel
program behaviour. Nevertheless, it is often the case that only a few of them are actually used by
users. The other views are too complex, too specific or not adapted to the user needs.

Paraver differentiates three types of views :

e Graphic view : to represent the behaviour of the application along time in a way that easily
conveys to the user a general understanding of the application behaviour. It should also
support detailed analysis by the user such as pattern identification, causality relationships,

e Textual view : to provide the utmost detail of the information displayed.

e Analysis view: to provide quantitative data.

The Graphic View is flexible enough to visually represent a large amount of information
and to be the reference for the quantitative analysis. The Paraver view consists of a time diagram
with one line for each represented object. The types of objects displayed by Paraver are closely
related to the parallel programming model concepts and to the execution resources (processors).
In the first group, the objects considered are : application (Ptask in Paraver terminology), task
and thread. Although Paraver is normally used to visualize a single application, it can display the
concurrent execution of several applications, each of them consisting of several tasks with multiple
threads.

The information in the graphics view consists of three elements : a time dependent value
for each represented object, flags that correspond to puntual events within a represented object,
and communication lines that relate the displayed objects. The visualization control module
determines how each of these elements are displayed. The essential choices are :

e Time dependent value : displayed as a function of time or encoded in color. Furthermore,
time and magnitude scale can be changed to zoom the visualization.

e Flags : displayed or not and color.

e Communication : displayed or not.

The visualization module blindly represents the values and events passed to it, without assign-
ing to them any pre-conceived semantics. This plays a key role in the flexibility of the tool. The
semantics of the displayed information (activity of a thread, cache misses, sequence of functions
called,...) lies in the mind of the user. Paraver specifies a trace format but no actual semantics
for the encoded values. What it offers is a set of building blocks (semantic module) to process the
trace before the visualization process. Depending on how you generate the trace and combine the
building blocks, you can get a huge number of different semantic magnitudes.

Expressive power

The separation between the visualization module which controls how to display data and the
semantic module which determines the value visualized offers a flexibility and expressive above
than frequently encountered in other tools.

Paraver semantic module is structured as a hierarchy of functions which are composed to
compute the value passed to the visualization module. Each level of function corresponds to the
hierarchical structure of the process model on which Paraver relies. For example: when displaying
threads, a thread function computes from the records that describe the thread activity, the value to
be passed for visualization; when displaying tasks, the thread function is applied to all the threads
of the task and a task function is used to reduce those values to the one which represents the task;
when displaying processors, a processor function is applied to all the threads that correspond to
tasks allocated to that processor.

Many visualization tools include a filtering module to reduce the amount of displayed informa-
tion. In Paraver, the filtering module is in front of the semantic one. The result is added flexibility
in the generation of the value returned by the semantic module.

Combining very simple semantic functions (sum, sign, trace_value_as is,....), at each level, a
tremendous expressive power results. Besides the typical processor time diagram, it is for example
possible to display:

e The global parallelism profile of the application.
e The total per CPU consumption when several tasks share a node.

e Average ready queue length of ready tasks when several tasks share a node.

The instantaneous communication load geometrically averaged over a given time.

The evolution of the value of a selected variable, ...

The default filtering and semantic function setting of the tool results in the same type of
functionality of many other visualization tools. A much higher semantic potential can be obtained
with limited training.

Direct and Derived metrics

Paraver offers a very flexible mechanism to compute and display a large number of performance
indices and derived metrics from the trace.

There is a first level of semantic functions which obtain the values in function of time directly
from the records in the trace. A second level of semantic functions can be obtained by combining
(add, divide, ...) the functions of time computed by the first level.

For example, starting with a window that looks at the cycles counter and another window that
looks at the instructions counter, it is possible to apply the second level of semantic functions
in order to obtain a derived metric like Instructions per Cycle by dividing those two windows.
Although the trace doesn’t contain any counter about IPC, it could be computed from the cycles
counter and instructions counter.

Quantitative analysis

Global qualitative display of application behaviour is not sufficient to draw conclusions on where
the problems are or how to improve the code. Detailed numbers are needed to sustain what
otherwise are subjective impressions.

The quantitative analysis module of Paraver offers the possibility to obtain information on the
user selected section of the visualized application and includes issues such as being able to measure
times, count events, compute the average value of the displayed magnitude,...

The quantitative analysis functions are also applied after the semantic module in the same way
as the visualization module. Again here, very simple functions (average, count,) at this level

4 CHAPTER 1. INTRODUCTION

combined with the power of the semantic module result in a large variety of supported measures.
Some examples are:

e Precise time between two events (even if they are very distant)

Number of messages sent between time X and Y

Average CPU utilization between time X and Y

Number of events of type V on processor W between time X and Y

Average CPU time between two communications

e Average execution time of the different functions

Multiple traces

In order to support comparative analyses, simultaneous visualization of several traces is needed.
Paraver can concurrently display multiple traces, making possible to use the same scales and
synchronized animation in several windows.

This multi-trace feature supports detailed comparisons between:

e Two versions of a code

Behavior on two machines

Difference between two runs

Influence of problem size

Comparisons which otherwise are very subjective or cumbersome.

Customization

Developing a tool which fulfills the needs of every user is rather impossible. Initially Paraver aimed
at supporting the projects carried out at CEPBA as part of our research and service activities.
One objective of the design was to provide some support for expert users having new needs and
willing to extend the functionalities of Paraver. For this purpose, Paraver is distributed with the
possibility of personalizing the two modules that provide the expressive and analysis power.

A procedural interface is provided in such a way that a user can, with a limited effort, link
into its Paraver version the actual functionality needed. Taking into account the built in semantic
functions and analysis functions and their relation to the hierarchical process model and the
possibility of combining them in a totally orthogonal way at each level, a user can obtain a large
number of new semantics by developing very simple modules.

Another aspect where the users may have personal preferences is in setting color tables. More
important is the possibility to specify the textual values associated with the values encoded in the
trace. All this is achieved through a simple but powerful configuration file.

Configuration files are simple, but very useful files which lets to the user customize his/her
environment, save/restore a session, ... Also, we can change some default options and redefine the
environment.

It is important to know and use these files because they make easier the day work with Paraver.

States window o] Colors

Betned Ss P Coe Colors Change Move GradieniFizg Colors
Z(S
Thread Semanic Funcion: Given State LI Code v Gradiont | Gratiet0) 1\ |
. Change the colors table : T crongoCoor | TS
oo state Label .
D - number of colors e o | [N
T Auming e
" 2 Notcrested J - label b R
= 3 Wating s messag Lo anserune |
‘He &2 - RGB values == I
«H 5 Thd. Synchr. 0
s T e — e |
: cC : 7 Sehea. ana Foriaoin | | Blte Jorastent 7Hard Couters |
= L7 Schea ana Forvson, | (B8 |
Set Al Statos| Unset Al States JLL — Copy Calors (R
ST JL T R—
o
GETERE J T
1 et R |
devo
19 Group Communicati |~
14 Tacing Disabea |/
| —
Specify each row name
for each object/level.
e | s
REDRAY._| * Conm _inecy i sent iFiag 7 coor 44| 4] »| W[»| £||
Evonts window BEIES
Defined Event Types/Values
Color_ Type_Latel Value Lavel Specify textual values to user events:
5 oot Lock (om B [o005 —mpao.comutomott -)
3 aoonnoos sched. Lock (OP) 53000010 e _compute_is_2 -specify its gradient color
2 o010 dan (0w 63000011 npeo_computoLtie_3 R
a0000i2 fto_ths 4 J - specify its textual value/label
o 0000 Resucton ook aawess oioosgrary ||| Ganonoa i - specify its values
.

Figure 1.1: Paraver Configuration File

Large traces

A requirement for Paraver was that the whole operation of the tool has to be very fast in order
to make it usable and capable to maintain the developer interest. Handling traces in the range of
tenths to hundreds of MB is an important objective of Paraver.

Easy window dimensioning, forward and backward animation, zooming are supported. Several
windows with different scales can be displayed simultaneously supporting global qualitative refer-
ences and detailed analysis. Even on very large traces, the quantitative analysis can be carried
out with great precision because the starting and end points of the analysis can be selected on
different windows.

Chapter 2

Installation

Package description

The package is distributed in compressed tar format (file Paraver-XXX.tar.gz, where XXX is the
plattform). To unpack it, execute from the desired target directory the following command line :

gunzip -c Paraver-XXX.tar.gz | tar -xvf -

The unpacking process will create four directories on the current directory (see table 2.1).

bin | Contains the binary files of Paraver distribution.

This directory contains the Paraver binary, paraver file,

the domapfile binary (to convert traces from ascii to

binary format) and the Paraver license daemon (paraverd).

etc | Contains files related to :

- the Paraver licenses.

- the script to launch the Paraver daemon (paraverd.sh).

- the log file for Paraver daemon (paraverd.log).

- an example of a Paraver configuration file (pcf_example.pcf).

Table 2.1: Package description. Installation.

Installation script

In Paraver home unpacked base directory, there is a script named install.sh which creates the
script to launch the Paraver license daemon.
Use it by typing :

install.sh <paraver_home_directory> [system]

This will create the bin/paraver.sh shell script (see the following subsection to see how could
be used).

The system option will install the script to automatically launch the Paraver daemon during
the system boot start up (you must have root permisions to install it).

Installation script of IBM and SGI distributions

The IBM and SGI distributions contains the binaries for the two supported ABIs. On the instal-
lation script arguments, the user can specify which executable version will use.
Select it by typing :

8 CHAPTER 2. INSTALLATION

install.sh <paraver_home_directory> [system] [32]64]

The script creates the bin/paraver.sh and creates the needed softlinks to the selected exe-
cutable format in src directory. By default, the 64-bit binaries are installed.

e the 32 option will install the package to use the new 32-bit.

e the 64 option will install the package to use the 64-bit.

Installing the license file

Before starting up the Paraver license daemon the license file has to be copied in etc directory as
license.dat. The Paraver license daemon searches for $PARAVER_HOME /etc/license.dat license file.
This environment variable is set up within the script.

have to be copied within that file.

If Paraver software packages are installed in the same directory only there could be one
license.dat file for all the packages. This file must contain all the licenses, so license contents

The license file will be sent you via e-mail®.

Installing the Paraver license daemon (paraverd)

The Paraver license daemon can be found in bin directory. It is resposible for the licenses man-
agement.

To start the daemon there is a script named paraverd.sh in etc directory which will start/stop
the daemon. If the user ran the installation script using the system option, this script has been
installed in boot start up directories.

#! /sbin/sh

This variable must point to the
paraver home: example /usr/local/soft/paraver
PARAVER_HOME_DIRECTORY = <paraver_home_directory>

case $1 in
’start?’)
export PARAVER_HOME=$PARAVER_HOME_DIRECTORY

echo "Starting Paraver license Daemon ..."
$PARAVER_HOME_DIRECTORY/bin/paraverd &

2
’stop?)

/sbin/killall 15 paraverd

)

*)
echo "usage: /etc/init.d/paraverd {start|stopl}"

esac

1To obtain a license please go to the http://www.cepba.upc.es/paraver/ or contact to cepbatools@cepba.upc.es.

If you would start up manually the Paraver license daemon write :
paraverd.sh start

To stop it write :
paraverd.sh stop

the script stops the Paraver daemon. Paraver will no longer run until license daemon will be
launched another time.

If Paraver daemon is not started, check the Paraver daemon log file (etc/paraverd.log) for
further information.

Launching Paraver

To launch Paraver, the environment variable PARAVER_HOME have to be set up with the paraver
home directory.

setenv PARAVER_HOME <paraver_home_directory>
export PARAVER_HOME = "<paraver_home_directory>"

Example : setenv PARAVER_HOME /usr/local/soft/paraver
Once this variable have been set up, start by typing :
$PARAVER_HOME/bin/paraver [trace_file_name.prv]

As arguments, the user can specify a trace file that will be loaded and one window configuration
file.

Chapter 3

Where does Paraver come from?

Perhaps the greatest challenges to develop efficient parallel programs are successful debugging and
performance tuning. In 1991, an environment was developed at CEPBA (European Center for
Parallelism in Barcelona) to reduce costs in parallel program development and tuning: the DiP
environment. DiP is based on a trace driven simulator (Dimemas) and a tool to visualize and anal-
ysis those traces (Paraver). It aims at predicting the performance of a message passing application
on machines not readily available while doing most of the development on a workstation.

DiP
= Tracing
Sequential machine Instru. MP Library
Message
Passing
Code

g88

Parallel machine

Execution

Tracing

Facilities

Tracefile

SDDF, MPI
XPVM, etc ...

7N\

L) .
Filters

Visualization
—_— Trace —_—
File

Visualization and Analysis

E> | Parameters modificatlonl
>

Figure 3.1: The DiP Environment Structure

The global structure of the DiP environment is described in Figure 3.1. Three tools consti-
tute the environment core: the DiP instrumented communication library; Dimemas, a distributed
memory machine simulator; and Paraver, a visualization and analysis tool. Other utilities where
developed to support interaction with public domain or commercial products. Translators (filters)
from several trace formats (SDDF , PICL) to the DiP trace format are some of these utilities.
In this way, Dimemas and Paraver can be used as powerful post-processing analysis and predic-
tion tools to many other environments. The design of the tools is modular, with the objective
of enabling the study of other parallel program performance factors such as locality and cache

11

12 CHAPTER 3. WHERE DOES PARAVER COME FROM?

utilization, file systems,...

The DiP basic structure is similar to typical postmortem analysis tools based on traces, but
there are some specific elements and design criteria that differentiate this approach from others.
In the design two objectives were fixed:

e to emphasize a clear division between parts of the tool set where each module has its own
functionalities

e to offer flexible mechanisms to combine those modules leading to the construction of very
powerful analysis and prediction functionalities.

From these simple concepts, the environment enables complex and large application analysis.
Arcs in figure 3.1 describe the possibilities of combination of the different tools. A significant
part of the power and usefulness of the environment comes from the flexibility in sequencing the
individual tools execution.
The typical DiP path used to carry out studies on the influence of architectural parameters is
shown here:

e The application is run with the DiP instrumented library, on a single workstation or in a
parallel system.

e The instrumented library generates a tracefile with relative times, which characterizes the
application.

e From this tracefile, Dimemas would rebuild the behaviour of the application on a parame-
terized target machine.

e A new tracefile with absolute times is generated to be visualized with Paraver.

e Based on visualization and quantitative measures given by Paraver, the user can modify the
source code.

Simulation and Visualization phases can be repeated several times in order to predict and ana-
lyze the performance on different target architectures. It is an off-line process, where the user has
not to compile nor execute his source code again, just modifying input parameters (architectural)
of Dimemas. The quantitative statistics that can be obtained with Paraver, provide important
information to guide the tuning of the program and to identify the most convenient optimization.

Dimemas and Paraver tool can be found at URL http://www.cepba.upc.es/tools. Dimemas
and Paraver are available for IBM AIX, SGI IRIX, Tru64 AIX, HP-UX, Solaris and Linux. Paraver
and Dimemas e-mail support is : cepbatools@cepba.upc.es

Chapter 4

Paraver Object Model

As described in the introduction, Paraver functionality is tightly coupled with the hierarchical
object model targeted by the DiP environment. Paraver works with two ortogonal object models:

e The process model is composed by the objects that correspond to the three levels of the
most frequently programming models: application, process and thread objects.

e The resource model represents the physical resources where the different threads are fi-
nally executed. The resource objects are tightly connected with the cluster of SMPs where
applications has been executed: processor and node.

WORKLOAD

Application (APPL) Application (APPL)

TASK

Klowe N
Klows |\
Klowe N

i

i i 1

A (5] | @A

Figure 4.1: Paraver object model

To exploit all the object model levels, the tools that generates trace files for Paraver must
be capable to get the process and resource information. Both shared and distributed memory

13

14 CHAPTER 4. PARAVER OBJECT MODEL

applications could be mapped on the Paraver object model.

Object Model flexibility

The Paraver Process and Resource models define the structure of two ortogonal type of objects
for which performance indices can be computed and displayed. The actual names used for those
objects derive from the standard parallel programing terminology. Nevertheless. Paraver does not
assume any semantics beyond the hierarchical structure of the objects. It is possible for any user
to implement instrumentation or simulation tools that map other concepts onto the thread, cpu,
task, ... names. For example, the resources model could be used to represent functional units and
threads could represent instruction flow. Features such as the behaviour of cluster arquithectures
could be easely displayed.

4.1 Paraver Process Model

This process model is a superset of the most frequently used programming models. On a Paraver
window, the type of process model object to be represented can be selected among:

e Set of applications (WORKLOAD)
e Application (APPL)
e TASK

e THREAD

A parallel application (APPL level) is composed by a set of sequential or parallel processes
(named as TASK in paraver process model hierarchy). The parallel processes are composed by
more than one thread while the sequential processes are mapped into one thread. The top of
the process model hierarchy is the WORKLOAD level representing a set of different applications
running on the same resources.

WORKLOAD

Application (APPL) Application (APPL)

TASK

Figure 4.2: Paraver process model

This model is very flexible, and can be easily mapped to the models supported by actual
communication or multi-threaded libraries.

A thread type window will display one line for each selected thread. Paraver supports several
applications concurrently running on the same system thus, on an application type window, one
line will be displayed for each application.

4.1. PARAVER PROCESS MODEL 15

In the three-level process model an application can have one or several tasks, and each task can
have one or several threads. Tasks do not share address space, thus communication between them
is only done through message passing. The different threads within a task are executed within the
address space defined by the task. Threads within a task can thus communicate and synchronize
through shared memory.

The value represented on a line of a given type is computed from the records in the trace by
the hierarchical composition of functions corresponding to each one of the levels in the model (see
figure 4.3). Top levels semantic functions return a value based on the semantic values returned by
the bottom levels. For example, the semantic value returned for TASK level is computed based
on the semantic values of the threads of the task.

SEMANTIC VALUE
of Process Model

WORKLOAD_func

Figure 4.3: Hierarchical composition of levels
Shared and distributed memory programming models can be mapped onto the Paraver process
model. For example, we can map the MPI programming model, the PVM programming model,
the OpenMP programming model, combined MPI and OpenMP programming models, ...

Example 1: Mapping the MPI programming model.

The mapping of the MPI programming model onto the Paraver process model can be done as
follows :

e cach MPI process is a Paraver TASK with one Paraver THREAD

e the whole MPI application is the Paraver APPL (application object), grouping all MPI
processes.

This mapping lets to have in a tracefile the execution of different MPI applications at the same
time.

The PVM programming model can be mapped like the MPI programming model. Each
PVM process will be a Paraver TASK.

Example 2: Mapping the combined OpenMP-+MPI programming model.

The combined OpenMP+MPI programming model could be seen as a MPI application where each
MPT process is composed by a set of threads which work in parallel. The mapping that could be
done is a combined mapping between the two programming models :

e cach OpenMP thread is mapped on one Paraver THREAD

e ecach MPI process composed of multiple OpenMP threads is a Paraver TASK

16 CHAPTER 4. PARAVER OBJECT MODEL

MPI Application (APPL level)

MPI process
(rank 1)

MPI process
(rank 2)

Figure 4.4: Mapping of the MPI programming model

MPI process
(rank 0)

e the whole OpenMP+MPI application is the Paraver APPL (application object).
As in the previous example, we can have a trace with different applications.

OpenMP+MPI Application (APPL level)

MPI process
(rank 1)

MPI process
(rank 0)

(rank 2)

Figure 4.5: Mapping of the OpenMP+MPI programming model

4.2 Paraver Resouce Model

The resource model represents the resources where the applications are executed. On a Paraver
window, the type of resource object to be represented can be selected among;:

e Cluster of nodes (SYSTEM)
e NODE (set of processors)
e Processor (CPU)

The processors are the resources where the threads are executed. Processors are grouped in
nodes. A task is mapped into a node and thus all its threads share their processors in that node.

The mapping is not necessarily one to one, so it is possible to have several tasks from a single
application on a given node. Tasks from different applications can also be mapped into the same
node.

Different resource models can be mapped onto the Paraver resource model. For example, a
uniprocessor machine could be represented by a single node composed by one processor. A single
shared memory multiprocessor with four processors could be represented as one node composed
by four processors. A distributed shared memory could be represented by different nodes could
be mapped by more than mode composed by different processors. At the top, the system level
has been added in order to represent a set of SMP clusters.

For a processor type window, the valued displayed is the value returned by the thread funtion
that is executing in that moment.

4.2. PARAVER RESOUCE MODEL 17

NODE NODE NODE

o
2o
00¢

Figure 4.6: Paraver resource model

SEMANTIC VALUE
of Resource Model

TR T {Th_f T (T

Figure 4.7: Hierarchical composition of levels

The semantic function for one node is computed based on the semantic values of the processors
of that node. Typical combinations are addition, average, maximum, New processor semantic
functions such as Active Thread or Active Thread Value have been developed that support new
types of analyses. These functions return the identifier or value respectively of the thread
running on the processor at the moment.

18

CHAPTER 4. PARAVER OBJECT MODEL

Chapter 5

Paraver Internal Structure

Paraver structure consists of three levels of modules (figure 5.1). First, working onto the trace
file there is the Filter Module. This module gives to the next level a partial view of the trace file.
Second, there is the Semantic Module which receives the trace file filtered by the previous module
and interprets it. The Semantic Module transforms the record traces to time dependent values
which will be passed to the Representation Module. The Semantic Module is the most important
level because it extracts and gives sense to the record values in the trace file. The trace file has
a lot of information that could be extracted and this module selects what will be extracted, this
information is called, the semantics of the trace file.

Finally, there is the Representation Module. It receives the time dependent values computed
by the semantic module and displays it in different ways. The Representation Module drives thus
the whole process and offers a graphical display of the trace file.

Tracefile

Tracefile records

Y
‘ Filter Module |

Tracefile records (filtered)

‘ Semantic Module ‘

Time dependent value (semantic value)
plus event and communication records.

i Representation Module

1 v ¥ ¥ v
1 Visualizer Textual Analyzer Analyzer
Module Module Module (1D) Module (2D)

Figure 5.1: Paraver Internal Structure

5.1 Representation Module

The representation module is composed by three modules, the Visualization, the Textual and the
Analyzer modules. These modules are the actual driving engine of the system. The mode of
operation can be seen as demand driven. When a new value has to be displayed (for example,
going to a time stepping through the animation or computing an statistic) the sequence of values
or events needed is requested from the next module.

19

20 CHAPTER 5. PARAVER INTERNAL STRUCTURE

5.1.1 Visualization module

The Visualization module is responsible of values and events displayed on the screen. It
is aware of concepts such as window sizes, display scales (time and magnitude), type of display
(color or level), type of object (application, node, task, thread or processor), number of rows to
display, measurement of time (even between different windows for precise measurements of long
intervals) and so on. This module concerns with the creation of new windows either by a direct
user command or through the zooming and cloning facilities. It takes care of the trace animation
which can be displayed both forwards and backwards. It also offers the possibility to go to a
position into the trace file to be displayed by specifying: an absolute or relative time, an user
event type or value, a message tag or size.

5.1.2 Analyzer module

Qualitative behaviour display is not sufficient to draw conclusions on where the problems are or
how to improve the code. Detailed numbers are needed to sustain that otherwise are subjective
impressions.

The Analyzer module computes statistics on overall or even just a user selected part of
the trace file.

There are some predefined statistics such as the average semantic value, number of events,
number of communications (sends/receives), ... The output of the analysis functions is presented
in a Paraver window either as table or as histogram.

5.2 Semantic Module

The Semantic module | [| computes the values to be transferred to the representation module.

The computation of the values is based on one or several records as returned by the filter module
described below. The [module is the only one that looks for the actual coding of the trace
state records and for the process model semantics. As mentioned before, each window represents
objects of a given type: node, processor, application, task or thread. The semantic module uses,
to generate values that will be given to the visualization or analysis module, the composition of
one function for each object level submitted to the one selected for the window. Examples of
functions:

thread level can return:

e Useful: It takes the state trace and returns if the state value is Running (state value 1)
or not (state value 0).

e State As Is: returns the state code
e Last Evt Val: This function takes the event trace and returns its event value.

task level can apply the sum or the boolean function to the values returned by the thread level
function for all threads within each task.

application level can apply the sum or the boolean function to the values returned by its task
members.

Each of these elemental functions are really simple but an important part of the power of
Paraver lies in this module and how the user combines the different functions to generate the type
of value that is relevant for his analysis. In case the system provided insuficient functions, the
user can link to Paraver its own function.

5.3. FILTER MODULE 21

5.3 Filter Module

The Filter module offers to the previous ones a partial view of the trace file. The user can
specify that only certain events are passed to the Semantic module, like only a specific type of
user event, messages of a given tag or destination, and so on. This is specified by a Filter module
control window that offers a nice interface for a very flexible set of filtering options. State records
are always passed to the Semantic module without filtering.

Chapter 6

Main View

When paraver is launched, it raises two windows; the Main Menu window appears on the left top
corner of your screen and Global Controller window appears on the right bottom corner.

Main menu window Filter Module
Tracefles Configuration Options Help o
Analyzer module (1D) .
=n] Analyzer: Analysis computed for State As Is view @ BtA8.C1.prv] ° |]
mw i B wsands | | | erecaes | | — = Jd
THREAD 1.1.1 1.08 o o 11684 Save 5
THREAD 114 059 o o 772 Begin Time
THREAD 1.1.5 099 0 0 Fiz 14147399902
BRI & i i z
THREAD 1.1.8 0.75 0 0 772 15213592.68
Average 097 0 0 821
Maximum 1.08 0 0 1164
Mi 075 o o 772
I Calculate />>
= Graph/Text Graph/Text Graph/Text Graph/Text |
Displaying windo e Analyzer module (2D)

=| State As Is view @ bt.W0000037786.prv a Global window @bt W0000047070.prv

W ! i CoMROSE FUNCTIONS

Wil b i} COMPOSE 1 Asls o
Wil 1R COMPOSE 2 asls =

Wil i1
ICLH I PROCESS MODEL

EMRIN st [
.l K0

X |

Visualizer Module

= Visualizer Module

, Controler

Figure 6.1: Paraver Screenshot

Once a tracefile has been loaded, the different Paraver modules can be accessed through these
windows (see figure 6.1). The next chapters will describe them :

e The Main Menu is composed by a set of menu options which lets us to load/unload
trace files, load/save window configurations, change some globals options, ... The Global
Controller lets to work with the different modules. It is composed by a set of buttons
which implement the Paraver functionalities.

23

24

CHAPTER 6. MAIN VIEW

the Filter module is described in chapter 7 on page 33. This module lets to filter some
communications and/or some events that won’t be passed to the next modules.

the Semantic module is described in chapter 8 on page 37. It works onto the Filter module
and computes the values that will be transfered to the representation levels.

the Displaying windows are described in chapter 9. They are the graphic representation
of the values passed by the Semantic module.

finally, the chapter 10 on page 75 describes the Visualizer, the Textual and the Analyzer
modules. The Visualizer module manages the displaying windows. The Textual Module
give us a textual representation of the trace file. Finally, the Analyzer modules lets us
to get a very detailed qualitative analysis by properly selecting the FILTER and SEMANTIC
modules. information.

6.1 Main Menu window

The Main Menu window is composed by a set of menu options divided in three mainly pop up
menus (figure 6.2). The first menu manages the traces (load, unload, get trace information, ...),
the second one is used to load/save window configurations and third one allows to change the
Paraver global options (drawing speed, system colors, ...). Next sections will explain them in
detail.

L=l paraver e i

[4 Tracefiles Configuration Options Help 42
il =o jal

ve l \ \

About F'araverl
System Colors

Drawing Speed
Load Windows Look hack percentatge
Save Windows Realloc Colors

Load Trace Ctrl+L
Load Previous -

Unload Trace

Trace Information F "
= General Information

WFEEE EENErERn Defined Event TypesValues window

Cuit Ct+@ pafined States window

Colars window

Figure 6.2: Main Menu

6.1.1 Tracefiles menu

The Tracefiles menu allows to manage traces.

T 3
—| paraver 1
Tracefiles | Configuration Options Help

= Load Trace Cirl+L
Load Previous -

Unload Trace

Trace Information " 'Genaral Infarmation
Trace Generation Defined Event Type/alues window
Gt Citl+Q Defined States window

Colors window

Figure 6.3: Tracefiles menu

6.1. MAIN MENU WINDOW 25

Load Tracefile option (Ctrl+L)

The Load Tracefile option is used to browse the directories and load a trace file. Select a trace
name in the file selection box and click the OK button. Then, Paraver begins to load it. Gzipped
traces are also accepted, paraver will uncompress them during the loading.

While loading a trace file, Paraver raises the computing window showing the loaded percentage.
Trace loading could be stopped by pressing the Stop Loading button to work only with the
current trace percentatge that has been loaded.

—| load Tracefile

Filter
I fuserlfunifupc/fac/paraverfraces!® pry
Directories Files
] BT.W.8proc.prv
- LU.A16prac.pry
HWC SWEEPID.4=4 prv
bR SWEEPID.UTE. pry
MPI+OpentdP
OpenkdP
UTE
| = = | = —— -

Selection

I fuserlfunifupc/aciparaveriraces! |

QK | Filter | Cancell

Trace Loading

Figure 6.4: Loading a tracefile

Binary traces are loaded more quickly than an ASCII, so for big ASCII traces we strongly

recommend to convert to binary format to speed up its loading (see the prv2map tool on page
111).

Load Previous

The Load Previous option contains a list of last previous loaded tracefiles. It allows quick access
to previous loaded traces.

| =-i Jaraver la %D

|1 Tracefles Configuration Options Help

/

Figure 6.5: Loading a tracefile

A small hidded .paraverdb file is created on the user home directory. Delete it if you want
to remove all list items.

Unload option

Paraver lets to unload a tracefile that won’t be used. When the user selects this option Paraver
raises a window where there are all the trace files that have been loaded; select the tracefile that
will be unloaded and click the Unload button to unload it.

26 CHAPTER 6. MAIN VIEW

Unleading a tracefile

Select a tracefile to unload :

IPI_application.UTE pn

bt M., switch. prv

swim.Bxe. hwe.prv
swim. g hwee.pry
hydroZd_mp00113023717.pry

Figure 6.6: Unloading Tracefile

Paraver makes an un-mapping process, and destroys the displaying windows associated to that
tracefile. The previous one in the list will be considered like the current tracefile.

Trace Information option

The Trace Information menu options let us to access the defined information for the current trace
file: number of applications, number of tasks, number of threads, number of nodes and processors,
defined user event labels, defined states, ...

T 3
—| paraver 1
Tracefiles | Configuration Options Help

= Load Trace Cirl+L

Load Previous -

Unload Trace

Trace Information I~ |General Information
Trace Generation Defined Event Type/alues window
Gt Citl+Q Defined States window

Colors window

Figure 6.7: Tracefiles menu

In this chapter only the General information option is described, the rest will be described
in next chapters. The Define Event/Values window raises a window that shows a list of the
defined event types and all their defined values for the current tracfile, it will be desribed in detail
in chapters 7 and 10. The Define States window raises a window that shows a list of defined
states labels, it will be desribed in detail in section 8.3.1 on page 48. Finally, the Colors window
option raises a window that shows the defined colors, see chapter 10 on page 80.

The General Information menu option raises a window containning the information about the
defined objects (number of applications, tasks, threads, ...) of the current trace.

The window shows :

e the trace file name
e its duration
e the date when it was generated

e the Process model information where could be seen the total number of applications, tasks
and threads and they hierarchy.

6.1. MAIN MENU WINDOW

=| Tracefile information (=0

Tracefile: MPI_application UTE.prv
Location: MPI_application.UTE.prv

Duration time: 903,871945 seconds

Date: 31710700 at 17:42

Process Model Information

Number of applications: 1

Humber of tasks: 18

Number of threads: a3

Application 1 has 16 tasks where :

task 1 has 3 threads.
task 2 has 4 threads.
task 3 has 3 threads.
task 4 has 3 threads.
task 5 has 3 threads.
task 6 has 3 threads.
task 7 has 5 threads.
task 8 has 4 threads.
task 9 has 4 threads.
task 10 has 3 threads.
task 11 has 3 threads.
task 12 has 3 threads.
task 13 has 3 threads.
task 14 has 3 threads.
task 15 has 3 threads.
task 16 has 3 threads.

Resource Model Information

Humber of nodes:

Number of processcrs: 3z
Node 1 has 8 processors.
Node £ has 8 processors.
Node 3 has 8 processors.
Hode 4 has 6 processors.

(o3

Figure 6.8: General Information window

27

e the Resource model information where could be seen the total number of nodes and pro-
cessors for each node. If no resource information is available, the message No resource
information is available is showed.

Quit option (Ctrl+Q)

To close Paraver.

-=.§ Paraver Question ;

g Are you sure you want to quit ?

Figure 6.9: Quitting Paraver

Paraver ask for confirmation before exiting.

6.1.2 Configuration menu

The second menu is called the Configuration menu. It lets to Load and Save the window configu-

ration files.

1

|| =] paraver3.0 {a iDé

I Tracefiles Qonﬂguratiunlgptions Help

e | gad Windows |

Save Windows

Figure 6.10: Configuration menu

28 CHAPTER 6. MAIN VIEW

Since Displaying windows aren’t explained until chapter 9 on page 63, the window configu-
ration files and these menu options will be explained in chapter 9.

6.1.3 Options menu

The Options menu allows to change Paraver global options.

|| =i paraver3.0 la]

[1 Tracefiles Configuration gptionslﬂelp
“ System Colors

Drawing Speed

Look hack percentatge

Realloc Colors

Figure 6.11: Options menu

Changing System Colors. System Colors option.

Paraver lets to change some colors as background and communication lines. By default, Paraver
draws the Logical communications lines and icons in yellow and draws the Physical communications
in red, but these colors can be changed. The change of colors will affect to all the displaying
windows.

Svstem Colors

System Colaors Change Colar
0 Backgraund i]

1 Scale [
2 Logical Comm [|Red

al Camm

Green

|1
Elue

Copy Colors

Ok

Figure 6.12: System Colors window

Change colors by clicking on the desired one (background, scale,...) and moving the scale bars
of the basics (R, G, B). To recover a color just double click on the desired color and the default
color will appear. To copy a color click the source color press the Copy Colors button and click
the target color.

The Background (system color 0) is the background color on a displaying window and the
Scale (system color 1) is the color of text and window axis (see figure 6.12 for details).

Changing the scrolling speed. Speed option.

When we are working with Play and Play back buttons (see chapter 9 on page ?7), sometimes the
speed of the machine where Paraver is being executed is faster than the speed of the X Server
which is processing scrolling events. As a result, the application overloads the X Server and it
does not respond to any event (for example, if user tries to click the Pause button to stop the
animation, it will not respond until it has processed all previous drawing events).

6.1. MAIN MENU WINDOW 29

To solve it, we have added an option (Speed option menu) to select the number of microseconds
between two drawing events that allows to define a user defined value. The Speed option will raise
a window to select it (see figure 6.13).

Speed
Speed
1

[

(ms between 2 evis)

Ok

Figure 6.13: Paraver scrolling Speed

By default, the value is set to 0 microseconds. To force a slow drawing, select a value greater
than zero. This value is theoretical and it depends on the X-terminal speed and the
machine where it is executed.

Look back percentatge option

Paraver tracefile is composed by a sequence of records ordered by time. The Semantic module takes
these records and computes a value known as semantic value which gives sense to the tracefile.

To compute these values we have to look back for the correct value and in a non homogeneous
big tracefile, those searches could be so slow (we are talking about traces of several megabytes).
This look back behaviour only is used when computing the first semantic value, the rest values
when going forward the tracefile will be computed with the records that we are going to find. If
the number of records to look back isn’t enough small the first semantic value could be incorrect.

Although, this first value could be incorrect, sometimes it is better not to have a well computed
value (because when we compute the next value will be correct) than have to wait for one of them.

The Look back percentatge menu option lets to select the percentage of tracefile records
that will be looked back to compute the correct semantic value.

Search

Percentatge of the Trace
100
I =]
Looking back for correct semantic value

Ok

Figure 6.14: Paraver Search

A 0% or 100% values means that Paraver will look back until all the rows have their correct
semantic value computed. A value greater than 0 means the percentage of records that will be
looked back to compute the correct value.

Figure 6.15 shows the difference between computing the correct semantic value or not for a
row. The tracefile that has been used is a non homogeneous tracefile because the processor number
one only has records at the beginning and at the end of the tracefile, the rest of the tracefile is in a
waiting state (red color). When we make a zoom only searching back the 10 % of tracefile records,
the correct semantic value for this row couldn’t be correct because to search it we should go back
until the beginning. Note, that when it happens row one is painted as an idle state because the
default semantic value is 0. In your example all the row has been painted as idle but usually the
zoomed area has records in all the rows and only a small idle state will appear.

If we search until the beginning we obtain the correct semantic value, so the row is painted
with red color.

30 CHAPTER 6. MAIN VIEW

All trace visualization

TRACEFILE

Only searches
until this point If we don’t search until the
beginning, the first row doesn't
have the correct semantic
value (sourld be red and not light blue).

If we search until the begining we
will find the correct value, and will
be painted asred.

Same window but searching the first
semantic value until the beginning.

Thefirst row don't have the correct semantic value
but in this case know that the thread is blocked
doesn’t give any infrrmation.

Figure 6.15: Example: Selecting the correct look back value

Realloc Colors option
Sometimes when paraver is launched, if other X applications are loaded (like Netscape) paraver

can’t alloc the color pallete and a Warning window is raised.
This option tries to realloc the color pallete used by Paraver after closing some X applications.

6.1.4 Help menu

5)

= paraver3.0 |

I
I Tracefiles Configuration Options Help |
“ About Paraver

Figure 6.16: Help menu options

About option

Paraver shows its credits.

Figure 6.17: Paraver Version

6.2. GLOBAL CONTROLLER WINDOW 31

6.2 Global Controller window

The Global Controller window is composed of a set of buttons which implement the Paraver func-
tionality (figure 6.18). When a tracefile has been loaded these buttons will be enabled, if there
isn’t tracefile loaded these buttons do not work.

Semantic Module
Filter Module

Gfoba\& Conrrfé;ffer ; a

IREIETPRE
IR TN 2 Ibiljlj)

/ \

_____ A R Tt

1

1 Visualizer imi i '

' Module Global Timing Zooming | Analyzer

' window Orders utility utility : Module (2D)
1 1
------------------------------------ Analyzer

Visualizer Module Module (1D)

Representation Module
Figure 6.18: Global Controler window

Paraver has three mainly modules : the Filter Module, the Semantic Module and the Represen-
tation Module. This last module is composed of three more modules which are : the Visualizer
Module, the Textual Module and the Analyzer Module.

In the Global Controler window, the Visualizer Module is divided in different buttons because
it has some utilities that works separately. Finally, the Textual Module doesn’t appear in the
Global Controler because it works onto a displaying window (see chapter 9 to how does it work).

Chapter 7

Filter Module

7.1 Introduction

The Filter Module is the first module that will work onto the trace file (remember the Paraver
structure 5.1 on page 19). This module lets to filter some communications and/or some events
that won’t be passed to the next modules.

Filtering any communication or any event means that those filtered traces won’t appear in the
next modules and also, they won’t appear in our visualization or in our analysis.

The Filtering Icon (figure 7.1) raises the Filter window that will appear at the most right

side of your screen.

Figure 7.1: Filter icon

7.2 Filter module window

The Filter Module window (figure 7.2) has two main areas : to filter the communications and/or
to filter the events. The name of the current displaying window is shown at the top.

7.2.1 Filtering communications area.

Paraver has two types of communications, the logical (when the send/receive functions are called)
and the physical (when the message is really sended or received) communications.

By default, Paraver works only with the logical communications and the physical are filtered.
At the top of the communication area there are the Logical and Physical toggles to select the type
of communication that will be filtered or not. Furthermore it is possible to filter communications
by PARTNERS and by MESSAGES.

PARTNERS Choose the communication pattern : ”From” objects (and/or) ”To” objects. The
objects have to be written in the text box only separated by commas. The functions to
select the ”partners” (rows) are:

All : All the current rows will be selected.
1= : Select all the current rows but ones written in the text box.
= : Only select the rows written in the text box.

None : No rows will be selected.

33

34 CHAPTER 7. FILTER MODULE

Window Name | e Modue -0

| < Tracefile Name

Communication |
filtering area | ||

Filtering Events
* window button

User Event
filtering area

Figure 7.2: Filter Module window

In order to help users when selecting communication partners, the Filter Object Selection
window (see figure refFilterObjectSelection) could be raised to select the From and To
partners.

=| Filter Module a (01

= Filter Object Sefection Window

Figure 7.3: Filter Object Selection window

MESSAGES Choose the communication attributes: ”Tag” tags (and/or) ”Size” sizes. The
tags/sizes have to be written in the text box only separated by colons.

The functions to select the ”messages” are:

All : All the current messages will be selected.

!=: Select all the current messages but ones written in the text box.
> : Select all the messages greater than ones written in the text box.
< : Select all the messages less than ones written in the text box.

= : Only select the messages written in the text box.

None : No messages will be selected.

7.2.2 Filtering user events area.

The user event filtering lets to select the " Type” types (and/or) ”Value” values. The types/values
have to be written in the text box only separated by colons.

7.3. SELECTING EVENT TYPES/VALUES USING THE EVENTS WINDOW 35

The functions to select the "user events” are:
All : All the current user events will be selected.
!=: Select all the current user events but ones written in the text box.
> : Select all the user events greater than ones written in the text box.
< : Select all the user events less than ones written in the text box.
= : Only select the user events written in the text box.
None : No user events will be selected.
[x,y]: Select all the user events whose type/value is a value within the interval.

When both ("PARTNERS” and "MESSAGES”) filtering processes are activated, then Paraver
will draw the communication traces that accomplish both filtering conditions.

Paraver only takes into account the records (selected) returned by the Filter Module.

The filtering selection can be applied on the drawing area of the current window, just by
clicking on the "Redraw” button; it is not necessary to rebuild the displaying.

7.3 Selecting event types/values using the Events window

The Filtering Events window help us to select the user events that will be considered in the
filter module. To raise it, click in one of the question mark buttons (see the Filtering Events
window buttons in figure 7.2) in the user events area.

Sometimes, when selecting events to filter, we know the events that have to be selected but
we don’t remember their type or their values. This window shows a list with all the defined event
types' and another list with the values defined for each type.

Defined Event types list ~Current tracefile Current window
name
=| Events window » s (=10
Filtering Events (T{acefile: bt AW0000047070.pr) State As Is view
Color Type Label : WValue Label

25 compute_rhs@OL@5 (madule rhs f) A
26 compute_rhs@OL@1@OL@E (module rt
27 compute_rths@OL@1@OL@7 (module
#_solve@OL@1 (module x_solvem
y_solve@OL@1 (module y_salvef)

0 42000405 Floating- point unit produced a result (Ph_FPUD_CRPL)
42000512 Processar cycles { PM_CYC)

0 42000609 Float multiply-adds executed (PM_EXEC_Fha)

0 42000700 TLB misses (PM_TLB_MISS) _Selected type

0 BO0000001 Parallel (OMP)

3 :

0

.'-\
{r

o
=

1
i
i

LAk L
-
£

/

4
4
=
]
4

.. Booooooz Workshating (OMP) 2 z_solve@OL@1 (module z_solve f) J

0 60000015 Parallel Function 34 add@OL@1 (module add.f £
BODBANTS User functions =]
Set Al Types| Unset Ail Types| Set All values| | Unset &1l Values| Ok

¥ f

Defined E\}ent values list

Setting/Unsetting Selected types/values for the selected type
all types in filter module for the current window

Figure 7.4: Events window
The Defined Event Types list shows for each event type the gradient color number which the

flag will be painted, the type number and its label. Select a type by clicking its item list and you
will see their defined values in the Defined Event values list.

1The Filtering Events window shows the user event types and values defined in the Paraver Config File (see
the Trace Generation document). The event types could have many event values which haven’t a defined label,
these values don’t appear in this window because they haven’t been defined by the user.

Chapter 8

Semantic Module

The Semantic Module computes the values that will be transfered to the representation levels;
these values are based on one or several records returned by the Filter Module (see chapter 7 on
page 33) and are known as semantic values.

The representation received the semantic values and display them in a gragphical way.. For
example, those values could be seen on a displaying window (see chapter 9) like a code colors
where each value has associated a color, or can be analyzed in the Analyzer Module.

The Semantic Module could extract the information from the trace file in several ways, and we
will have to select it to obtain the desired trace view. The semantic values are computed through
the Paraver Object Model hierarchy (see chapter 4). The lowest level (THREAD level) gets a
value from filtered trace records. Depending on the selected level where Semantic Module will
work, different functions will be applied. This first level of functionality obtain values directly
from record traces. A second level of functionality let to combine different views to obtain derived
metrics from the first level of functionality. I could be seen as combine two different views at the
same hierarchy level to obtain a new one.

Next sections will try to describe how values are collected and combined through the different
levels. Section 8.1 will describe how the Semantic Module works. It will describe how values will
be combined through the selected object model hierarchy to obtain the resulting semantic value
at selected level. Also, it will introduce the user to the second level of functionality. Sections 8.2
and 8.3 will describe the Semantic module window and the functions implemented in each level
that collect (THREAD level) or combine (upper levels) the values from record traces. Finally, the
section 8.4 will describe the extended functionality DERIVED WINDOWS.

8.1 How does the Semantic Module work ?

Paraver offers some default ways to collect the values from traces. Mainly, we have three ways to
get the values from traces:

- work with Process Model objects: THREAD, TASK, APPL and WORKLOAD.
- work with Resource Model objects: CPU, NODE and SYSTEM.
- obtain derived metrics by combinning different views.

In the first one, we get the values through the Process Model hierarchy. At the bottom
level, there is the THREAD level which gets the values from traces. Top levels (TASK, APPL and
WORKLOAD) combine the values returned by previous levels. For example, TASK level compute a
combined value returned from all the thread values of the task.

The second one get the values through the Resource Model hierarchy. At the bottom, there
is the THREAD level that passes to the processor (CPU) level the values got from record traces.
The processor level gets the value from the thread that is executing on that processor. Top levels

37

38 CHAPTER 8. SEMANTIC MODULE

(NODE and SYSTEM) combine the values returned by previous levels. For example, NODE level
compute a combined value from values returned by all the processors of the node.

Values returned by the thread level could be: state where thread is, thread identifier, task
identifier, event values, ... When working with Resource Model objects, values from traces that
has not been executing in a processor are not considered.

The third one combine the different views created to get new derived views. It could be seen
as combine the values returned by two hierarchies into another one.

Next sections will describe how values are computed through the object model hierarchy to
obtain the semantic value. Section 8.1.1 will show how values are computed in the Process Model
hierarchy, section 8.1.2 wil describe the Resource Model hierarchy and finally, section 8.1.4 will
describe how derived views are obtained.

8.1.1 Working with Process model objects

When working with Paraver Process Model objects, there are four levels that we can select to
work with: the application level (ApPPL), task level, thread level and at the top the workload level
(WORKLOAD). In each level Paraver applies some functions to collect the values from the previous
levels and return the corresponding value for the selected level. As we will show in section 8.1.3,
before send the computed values for the selected level to the representation modules, they will be
passed to another levels known as compose levels. These levels have been added to modify the
values at the top level. We will explain in detail its uselfulness.

WORKLOAD

Application (APPL) Application (APPL)

TASK

Figure 8.1: Paraver process model

When working at APPL level, the semantic value returned through the process model is a
combined value of all the values computed for all the objects within the application object. Values
returned at APPL level are computed as:

1. each thread within a task computes a value from record traces. These values are passed to
the task where thread belongs

2. the tasks receive the values returned by its threads and computes a combined value that is
passed to the application where task belongs

3. finally, the application receive the values returned by its tasks and computes a new combined
value, semantic value of Process Model, that is passed passed to the next level (see figure
8.2).

When working with levels TASK or THREAD levels the semantic value is computed as :

8.1. HOW DOES THE SEMANTIC MODULE WORK ? 39

SEMANTIC VALUE
of Process Model

NN

Figure 8.2: Semantic Value computed at APPL level

- when working at TASK level, each task returns a combined value, semantic value of Process
Model, with all the values passed by its threads (see figure 8.3 left) to the next level.

- when working at THREAD level no upper levels are applied, each thread returns the result
of apply the selected function, semantic value of Process Model, to the next level (see figure
8.3 right).

SEMANTIC VALUE
of Process Model

SEMANTIC VALUE
of Process Model

Figure 8.3: Semantic Value computed at Task and Thread levels.

When working at the WORKLOAD level, the semantic value returned through the process model
is a combined value of all the application values (see figure 8.4). The WORKLOAD level has been
added in order to combine the value returned for each application at the most top hierarchy level.
These level is useful when trace cotains more than one application.

SEMANTIC VALUE
of Process Model

WORKLOAD_func

SLTHT

Figure 8.4: Semantic Value computed at WORKLOAD level

40 CHAPTER 8. SEMANTIC MODULE

8.1.2 Working with Resource model objects

The Paraver Resource Model has three levels: the node level (NODE), the processor level (CPU)
and at the top, the system level (SYSTEM). In each level Paraver applies some functions to collect
the values from the previous levels and return the corresponding value for the selected level. As
we will show in section 8.1.3, before sending the computed values for the selected level to the
representation modules, they will be passed to another levels known as compose levels. These
levels have been added to modify the values at the top level. We will explain in detail its uselfulness.

NO NO NOD

Figure 8.5: Paraver resource model

When working at NODE level, the semantic value returned through the resource model is a
combined value of all the values computed for all the processors within the node (see figure 8.6
left). The cpU level works over the THREAD level, only one thread could me mapped on a
cpu at a time.

When working at CPU level, the semantic value returned through the resource model is the
value returned by the thread that is executing on the processor (see figure 8.6 right). Only one
thread value is returned at a time to the processor, the values returned by applying the THREAD
level function is returned to the processor where it is executing. Depending on the view that would
be obtained we could select at THREAD level functions that:

e return the state of the thread. The processor view will show the thread activity that is
executing on the processor.

e return thread, task or application identifier. The processor view will show the thread iden-
tifier that is executing in the processor. This type of view shows the threads that have been
executing on the processor.

SEMANTIC VALUE
of Resource Model

SEMANTIC VALUE SEMANTIC VALUE

of Resource Model of Resource Model

N . R

CThof e CThoE S ThOf T S (Thr ST CThot s {Thof Y SThoe o (ThOf IThf OThf

Figure 8.6: Semantic Value computed at NODE and CPU levels

When working at the SYSTEM level, the semantic value returned through the resource model is
a combined value of all the node values (see figure 8.7). Different metrics could be obtained using

8.1. HOW DOES THE SEMANTIC MODULE WORK ? 41

in this level: number of processors active in the system during the execution, number of processors
idle, number of processors doing an specific thread activity, ... This level has been added in order
to get a combined from the values returned for each node, a global SYSTEM value.

SEMANTIC VALUE
of Resource Model

T TR Tt Th_f T h_f T h_f
Figure 8.7: Semantic Value computed at SYSTEM level

8.1.3 Compose levels

The values returned through the process or resource models are processed by two extra levels that
has been added on the top of the hierarchies, the compose levels. These levels allow to apply
some functions to the values before send them to the representation modules (figure 8.8).

SEMANTIC VALUE

!
CGowosez e

SEMANTIC VALUE
of Process Model
or Resource Model

Figure 8.8: COMPOSE levels

First, the Semantic module applies the selected COMPOSE 2 function to the value returned
through the object model hierarchy. The value returned by the functions is passed to the next
compose level. Finally, the Semantic module applies the selected COMPOSE 1 function to the value
returned by the COMPOSE 2 level.

Section 8.3.4 will describe the functions that have been added to the compose levels. There
are some views where is needed to select one of these COMPOSE functions to modify the values
at the top of the hierarchies. For example, we could filter some values (Select Range function),
divide the values (Divide and Mod functions), ...

8.1.4 Derived views

The derived views have been added to extend the Paraver functionality. The goal is to obtain
a derived metrics by combining different views of the same trace file (see figure 8.9).

42 CHAPTER 8. SEMANTIC MODULE

SEMANTIC VALUE

COMPOSITION
FUNCTION

ADD
PRODUCT
SUBSTRACT
DIVIDE

FACTOR / \ FACTOR

SEMANTIC SEMANTIC
VALUE VALUE

Figure 8.9: Combining two semantic values into a new one.

The derived views combine (add, divide, substract, ...) the values returned by the Semantic
module of two object model hierarchies to a new one. A weight could be applied to the semantic
values of each source hierarchy by multiplying a FACTOR value to each branch.

These type of views are useful to obtain derived metrics that could not be extracted directly
from trace records through the Semantic module and it is needed a combination of extracted trace
parametres to get the desired information.

Supose that we have obtained next two views:

e in the first one, the Semantic module is returning for each thread the performance counter
of executed instructions

e in the second one, the Semantic module is returning for each thread the performance counter
of consumed processor cycles

A derived metric that could obtained from the two performance counters, executed instructions
and processor cycles, is the Instructions per Cycle (IPC) value. Record traces only contain
the performance counter information but using the derived views to compute it is as easy as to
divide the semantic values returned by the two views.

After the values are combined, two new COMPOSE levels also could be applied to the resulting
value. It is important to note that when working with derived views the combined
semantic values are the resulting of computing the two selected source hierarchies
including the compose levels too. In fact derived views are combining two semantic
values that have been returned after applying the section 8.1.3).

8.2 Semantic window

The Semantic Icon (figure 8.10) on the Global Controller window raises the Semantic Module
window. Depending on the type of view that we are using the Semantic window looks different.

il

Figure 8.10: Semantic icon

Working with Process/Resource model objects

The Semantic Module window (figure 8.11) is used to select what information will be extracted
from the trace file and how it will be interpreted. It has two main areas : the PROCESS/RESOURCE
model area with the object model levels, and the COMPOSE area where we can select the compose

8.2. SEMANTIC WINDOW 43

functions that will be applied to the resulting values. The current window and tracefile names are
shown at the top of the Semantic window.

d Tracefile
Window
< name Compose levels
name
Semantic Module) 4 {a Semartic Module a
Global window@bt WO000035618. pry L Global window@hbt WO000035618.pry
COMPOSE FUNCTIONS A A COMPOSE FUNCTIONS
COMPOSE 2 A5 s — COMFPOSE 2 B s — |
£
2
PROCESS MODEL i RESOURCE MODEL
Q.
WORKLOAD Adding - | % o SYSTEM Adding - |
g2
APPL Adding | o £ MNODE Adding = |
E o
£
TASK adding | % S cPU &ctive Thd =
3
THRE&D State &3 Is — | o THREAD State A3 ls = |
ok | Default | Ok | Default |
Process model Resource
objects objects

Figure 8.11: Semantic Module window

In each level there are some functions to manage the values from the trace file. These functions
are applied from bottom to top and Paraver disable the levels which are forbidden in according to
the process model where the current window is working. For example, at CPU level, you only can
select functions in CPU and THREAD levels, the NODE and SYSTEM functions are disabled. If you
worked at APPL level, you could work with APPL, TASK and THREAD functions but WORKLOAD
level is disabled.

Depending on the level where window is working process or resource objects will be shown:

e When working with Process model objects (see figure 8.11 left) only the process objects
are showed: THREAD, TASK, APPL and WORKLOAD levels. For example, we could conclude
that left Semantic window in figure 8.11 is working at WORKLOAD level because all lower
levels are enabled. The THREAD selected function is the State As Is function and the upper
levels return the Adding of all the input values (we will describe the selected functions
behaviour in next sections).

e When working Resource model objects (see figure 8.11 right), the resource objects are
showed: CPU, NODE and SYSTEM levels plus the THREAD level. In the example of figure 8.11,
we could conclude that right Semantic window shows is working at SYSTEM level because all
lower levels are enabled. The THREAD selected function is the State As Is function and the
selected CPU function Active Thd returns to the next level the value of the current thread
(state value because State As Is function is selected) without modify it. The next upper
levels add (Adding function) the values of the previous levels.

The object level where a window is working is selected in the Visualizer module and it will be
described in chapter 10 .- Representation module on page 75.

Working with Derived views

When working with Derived views, the Semantic window looks completely different. As we
explained in section 8.1.4, derived views combine different views (applying a factor to each one)
to create a derived one. Since views are represented in a displaying window (see chapter 9 on page

44 CHAPTER 8. SEMANTIC MODULE

63 to see a detailed description about Displaying windows), combine two views is to combine
two displaying windows.

When working with this type of windows, the Semantic window tries to reflect that the view
is a combination of two source views. Figure 8.12 show how Semantic window looks like when
working with a derived window. It shows the two source window from values will be combined,
the composition function that will be applied and the factors that will be applied to the source
hierarchy values.

In the COMPOSE area, we can select the compose functions that will be applied to the resulting
values. The current window and tracefile names are shown at the top of the Semantic window.

) Tracefile
Window .~ name Compose levels
name
s Semantic Module V4 e

TLE_miss_ratio@ht WOOOOO3G6616.prv

COMPOSE FUNCTIONS ’

COMPOSE 2 As s —

Fagtor | 100.000
AR TLB_misses

Operation divide _.| - Combine operation

WINDOY Loads =
Fastor I] 00g

Ok | Default |

Figure 8.12: Semantic Module window

From figure 8.12 we can conclude that the resulting window TLB_miss_ratio window is the
resulting window of dividing (divide operation):

e the values computed from TLB_misses window (multiplied by a factor of 100)

e by the values computed from Loads window (multiplied by a factor of 1)

The resulting values are not modified at COMPOSE levels because As Is operation has been
selected (we will describe the COMPOSE functions behaviour in next sections).

8.3 Semantic functions

By default, Paraver has some semantic functions in each level that could be used in different ways to
extract the information from the trace records. As the THREAD level is the lowest level and appears
when working with process or resource object models, we first in section 8.3.1 will describe the
functions that have been implemented in that level. Later, section 8.3.2 will describe the functions
implemented in each process object level and section 8.3.3 will describe the functions implemented
in each resource object level. Finally, section 8.3.4 will describe the functions implemented at
COMPOSE level.

Thread functions return a value that could be extracted from record traces, top levels com-
bine or modify the values from the previous level and return it to the next ones. Selecting the
appropriate functions at each level we could obtain the desired information.

8.3. SEMANTIC FUNCTIONS 45

8.3.1 Thread functions

This is the lowest, but the most important level. This level decide in what we are going to work
such as states, events or communications and what we are going to do with them.

THREAD semantic functions

Semantic Module ; a
Global window@bt W0000047070.pry
COMPOSE FUNCTIONS sigte [

COMPOSE 1 whE = | TTEE—
COMPOSE 2 Asls | state Sign Functions that works
State As ls

with state traces

Given State
In State
Mot In State

PROCESS MODEL

Event
Last Evt Type
Last Evt val
MNext Evt Type A
THREAD state Asls [oo anctlons that works
A with event traces
g Avy Mext Evt val
Avg Last Evt Val

ok} Default Given Evt val
In Ewt Wal

Int. Between Evt

Default thread
Camm.

popup menu — Functions that works
Last Tag . . .
with communication traces

Comm Size
Ohject

Application 1D

Task ID Functions that works
Thread 1D with traces identifier
Cpu ID
Mode D

Figure 8.13: Thread level functions

Thread functions work over the trace file (remember that first, it had been filtered by the Filter
Module). This level is always enabled because it works with all the defined levels in the Paraver
Object Model as the lowest level.

These THREAD functions have been grouped depending on kind of information that they ex-
tract:

e the first group (State group) has functions that work with state traces; Functions work with
the state value of the state record.

e the second group (Event group) has functions that work with event traces; some functions
work with event types and some with event values.

e the third group (Comm. group) is composed by functions that work with communication
record.

e the fourth group (Object group) is composed by functions that work with object identifiers
traces. It returns the object (thread, process, ...) where record trace belongs.

Next subsections will describe the functions that have been implemented on each group and
the type of information that return to the next level.

46 CHAPTER 8. SEMANTIC MODULE

Functions that work with state traces

e Useful : It takes the state trace and returns if the state value is Running (state value 1) or
not (if the state trace isn’t Running it returns an idle state or value 0). Only state values 1
are returned, the rest of state values are returned as an idle state (state value 0). See figure

8.14.
STATE VALUES 1
v
USEFUL
v v
VALUE RETURNED 1 0

Figure 8.14: Useful function

e State Sign : It takes the state trace and returns a state value 1 (running state) when state
value isn’t an idle state (state value 0) and if state value is 0 (idle state) a 0 is returned.

STATE VALUES 123 0

STATE SIGN
v
VALUE RETURNED 1 0

Figure 8.15: State Sign function

e State As Is : It takes the state trace and returns its state value. This function does not
modify the state value, it just returns the state value.

STATE VALUES 0123 n
vYvy

STATEAS IS
VYV

VALUE RETURNED 0123 n

Figure 8.16: State As Is function

e Given State : It takes the state record and returns its state value if it is selected and idle
otherwise. Is like the State As Is function but filtering only the selected states, these states
are returned, but the states which hasn’t been selected will be converted to an idle state
(state value 0).

To select the state values that will be returned as is, when this function is selected it raises
a window to fill those state values. The user can select more than one state putting commas
between them (note figure 8.17).

e In State : It takes the state trace and returns if the state trace is in one of the states
selected or not. Is like the State Sign function but only returns as a running states the

8.3. SEMANTIC FUNCTIONS 47

THREAD Parameters
Current window | . > Global window) NOT selected Selected
name) Defined states states states
Given State Parameters ... 7 button STATEVALUES (0 -
ok | Default |
: v
Selected states VALUE RETURNED 0

Figure 8.17: Given state parameters window

selected state values, the selected values are converted to the a running state, the rest are
returned as an idle state.

When this function is selected it raises a window to fill the state values. The user can select
more than one state putting commas between them (see figure 8.18).

THREAD Parameters
Current Window, | . > Gilobal window) NOT selected Selected
name Defined states
In State Parameters button STATE VALUES
Defaut | IN STATE
: v
Selected states VALUE RETURNED 0 11

Figure 8.18: In State parameters window

Figure 8.19 shows the difference between the In State and Given State functions when we
are selecting only the state value 3. The In State function transform this state value to
a running state (state value 1) which by default is painted in dark blue, the others states
values are converted to an idle state (state value 0) and are painted in light blue. The Given
State function doesn’t change the state value 3, and returns its state value (value 3)but the
rest are converted to an idle state (value 0). By default, the state value 3 is painted in red
as you could see in the displaying window.

In state 3 Given state 3

4784154 4784154/
| Time

| |
REDRAW | _conm i Recy iSend i Flag W Color 44| «| »| | | W] REDRAW | i Gorm i Recy i Send i Flag 17 Color 44| 4| | [»o| m]

Time

Figure 8.19: In State vs Given State

e Not In State : It takes the state trace and returns if the state trace isn’t in one of the sates
selected or not. When this function is selected a new window appears to select the states.
The user can select more than one state putting commas between them.

48 CHAPTER 8. SEMANTIC MODULE

THREAD Parameters
Current windo\/_\/_ » Global window . NOT selected Selected
name Defined states states states
Mot In State Farameters button sTaTelALUES
State Value:1/1,3 ™y ; i] el
e e “. ',‘
ok | % Default | NOT IN STATE
: v
Selected states VALUE RETURNED 1 00

Figure 8.20: Not In State parameters window

Selecting states using the Defined states window

When selecting individual states in functions Given State, In State and Not In State we can use
the Defined States window (figure 8.21).

This window contains a list with all the defined states showing their color, their value, their
label and a toggle button to select/unselect the state. Next to the text box to fill the selected
states in each THREAD PARAMETERS window there is a question mark button to raise this
helpful window (see figures 8.17, 8.18 and 8.20).

: Window name
Tracefile name

= States Window } 10 | Defined states
Defined States (Tracefie: Hw0000047070pry) Globalview o || 1St
Color State Lakel
r 0 Idle -
\l';;- 1 Runhing J
o 2 Mot created
l',- 3 Waiting a message
D. 4 Blocked
2 S Thd. Synchr
S ¢ Wit/ aitAl
o Sched. and Fork/Join
o Test/Probe]
Set All States| . Wnset All States semantic Function : Given State Ok
s : o |
x *
" Selected states Selected function
) . for the current function
Setting/Unsetting
all states

Figure 8.21: Defined States window

At the top of the window, next to the Defined States label there is the current window name
and the current thread semantic function. Select/Unselect the desired states by clicking in each
toggle button, if the toggle button is set, the state is selected and appear in the states selection
of the current window. When the toggle is unset, the state isn’t selected. Also, you can write the
desired states separated by comas in the parameters window of each function, changes are applied
and toggle buttons will be selected/unselected. Note, that changes in the selection of states only
will affect the current window and the current thread semantic function.

At the bottom of the window, the buttons Set All States and Unset All States lets to

8.3. SEMANTIC FUNCTIONS 49

select /unselect all the states only by clicking them. The OK button will close the window.
The number of states, the color and its label can be changed (see Trace Generation document,)
to obtain a customized user environment.

Functions that work with event traces

e Last Evt Val : This function returns the las value of the event until a new event is found

in the tracel.

Figure 8.22 shows an example of the values returned by this function. The user events
are painted as flags (see figure 8.22). Note, that when the user event with value 107 is
encountered the value returned is 107, so the value goes from 4180 to 107. When the next
event is encountered the value of the the event is returned (event value 9683) so the value
goes from 107 to 9683.

The value returned at this point is the value
of the current event (107).

T 1 1 1 1
| Lo L, i i

B mEm PRl A . FRRER R PR
1 ' 5, ' “event value = 9693 X
! event value = 107 ! !

. . : :

| | i i

| | i i

' ! value is 9693 ! '

: o : X X

1 @ 1 1]

1 o 1 1 1

1 < i 1 1 1

' 2 v ' I |

. 5 . : :

i 2 | valueis o7 i !

' 5 |l | \

T 1 T

T
1999225 ‘ 2001502 2003772 =dele =Rl =)

At this point, the value returned by
the function is the value of the current
event (4180)

Figure 8.22: Example of Last Event Val

e Last Evt Type : It takes the event trace and returns its event type. Is like the Last Evt
Val function but it returns the event type instead of the event value.

e Next Evt Val : When an event trace is encountered this function searches for the next
event and returns its value. So from the current event to the next event, the value returned
will be the value of the next event.

This function will be very useful when for example, the user events are counting something
that had happened within the interval between the current time and the next event time,
because it lets to paint the interval with the counting value.

Figure 8.23 shows the same example that figure 8.22 but using the Next Evt Val function.
When the current event is the event with value 107, the value returned is the value of the
next event (9683). The value 107 has been returned when the previous event has been
encountered.

Suppose that event values are counting the primary data misses. Each event marks the
data cache misses that has been occurred during the interval. If we use the Last Evt Val
function (figure 8.22), we can’t see the value in the correct interval, note that the 9683 cache
misses are painted in an incorrect interval, they should be painted in the interval from event
with value 107 to event with value 9683.

1Remember that Filter Module is applied before the Semantic Module, so only selected events will be passed
to the semantic function. Filter the desired events to obtain your desired visualization.

50

CHAPTER 8. SEMANTIC MODULE

The value returned at this point is the value
of the next event (9693).

= i Liml : RARR FR R
E : E " event valueE: 9693 E
, ‘eventlvalue = 107 | |
: Yo ' :
. value is 4693 : X
[~ []]
, 1S , : :
. o : X X
T ° , : :
1 =3 1 1 1
' = ' ' '
[> []]
t t t

t
1999225 ‘ 2001502 2003779 =dele = telal]

At this point, the value returned by
the function is the value of the next
event (107)

Figure 8.23: Example of Next Event Val

If we use the Next Evt Val function, the value is painted in the correct interval. Note
the difference between the two examples. The user has to select what will be the correct
visualization.

Next Evt Type : When an event trace is encountered this function searches for the next
event and returns its type. Is like the Next Evt Val function but it returns the event type
instead of event value.

Avg Next Evt Val : This function works like the Next Evt Val (working with the value
of the next event) but returning a value in function of the interval duration.

value;y1 * factor

tit1 — ¢
Where:

— value;yq is the value of the next event.
— t;41 is the time of the the next event (time expressed in microseconds).

— t; is the time of the current event (time expressed in microseconds).

The value of the next event (value;1) is multiplied by a factor (by default, value 1000).
This factor could be used to change the units of the returned value, for example, can be used
to obtain the value per seconds instead of value per milliseconds. By default, we obtain a
value per milliseconds because factor is 1000 and we are working with microsecond precision.

Figure 8.24 shows the same example than figure 8.24 but using the Avg Next Evt Val
instead of Next Evt Val. Note that value 181 is obtained through the next event value
(value 187) multiplied by factor (value 1000) and divided by the duration of the interval
(591 microseconds).

Avg Last Evt Val : This function works like the previous one but works with the current
event value instead of the next.

value; x factor

tit1 — ¢

Where:

8.3. SEMANTIC FUNCTIONS 51

The value returned at this point is :

9693 * FACTOR
= 6427
1508 microsec. FACTOR = 1000

= oiml il FRa pa ph

" event value = 9693

vevent:value =107

\ i

\
1508 micrésec.
e

value is §427

t t t
1aaazes W™ ZO01502 2003772 2006056
. 591 microsec.

value is 181

At this point, the value returned by
the function is :

107 * FACTOR
— =181
591 microsec.

Figure 8.24: Example of Avg Next Event Val

— wvalue; is the value of the current event.
— t;41 is the time of the the next event (time expressed in microseconds).
— t; is the time of the current event (time expressed in microseconds).

As a result, the function will return the value of the current event in function of time.

e Given Evt Val : It takes the event trace and returns its event value if it has been selected
or an idle state if not. To select the event values that will be returned, when this function
is selected Paraver raises a window to select these event values. As the state parameters
windows, more than one value could be selected.

THREAD Parameters

Global window

Given Evt Wal Parameters

Event Value] 1

Ok Default

Figure 8.25: Given Event Value parameters window

e In Evt Val : It takes the event trace and returns a running state if it has been selected
or an idle state if not. To select the event values that will be returned, when this function
is selected Paraver raises a window to select this event values. As the state parameters
windows, more than one value could be selected.

The difference between this function and Given Evt Val is the same that the difference
between Given State and In State; the previous one returns the event value, and this one
returns it as a running state (value 1).

e Int. Between Evt : This function returns as a value the time between the current event
trace and the next event trace. When an event trace is encountered, search for the next

52 CHAPTER 8. SEMANTIC MODULE

THREAD Parameters

Global window

In Ewt Wal Parameters

Event vValue|

Ok | Default

Figure 8.26: In Event Value parameters window

event and substracts the two times. Figure 8.27 shows how it works and which values are
returned.

event at time ti event at time ti+1

event at time ti-1

|

FeapzA Fm:h
i

t - t
1993225 2001502 2003779 ZOENEE

. valueis ti+l - ti
valueisti - ti-1

Figure 8.27: Example of Int. Between Evt

Functions that work with communication traces

e Last Size : Returns the communication size while it is active. From logical communication
ot physical the communication size is returned as value.

e Last Tag : If the communication trace is a physical receive returns its message tag.

Functions that work with object identifiers

e Application ID : Returns as a value the application identifier where thread belongs. For
example, this function is useful to see which applications have been running on a processor.

e Task ID : Returns as a value the task identifier where thread belongs. The task identifier
is a global numbering assigned to all tasks from all applications. For example, this function
is useful to see which tasks have been running on a processor.

e Thread ID : Returns as a value the thread identifier. The thread identifier is a global
numbering assigned to all threads from all applications. For example, this function is useful
to see which threads have been running on a processor.

e Cpu ID : Returns as a value the processor identifier where thread is running. The processor
identifier is a global numbering assigned to all processors from all nodes. This function is
useful to see the processors where a thread has been running during the execution.

8.3. SEMANTIC FUNCTIONS 53

e Node ID : Returns as a value the node where thread is running.

8.3.2 TASK, APPL and WORKLOAD functions

TASK, APPL and WORKLOAD levels return a combined value of all the values returned by the
previous level. Next points will describe the functions implemented on Process Object level.

TASK functions

When the TASK functions are enabled it means that we are working at TASK or APPL levels. The
TASK level works over the THREAD level.

In this level, each task receives the values from its threads, takes all these values and computes
a combined value. The value will be passed to the next level (if window is working at TASK level,
the value is passed to the COMPOSE levels). The TASK level is enabled when working at TASK level
and APPL level.

Semantic Module a
Task view@MPI_application UTE. pry

COMPOSE FUMNCTIONS

COMPOSE 1 Azl = |
COMPOSE 2 Azl = |

PROCESS MODEL

VRSN adding ﬂ
adding Sign
THREAD = |
Average
I aximum
rinimum
Ok Thread i Default |

Figure 8.28: Task level functions

The functions implemented at this level are :

e Adding : It adds all the input values and returns the sum.

e Adding Sign : It adds all the input values and returns if the sum is greater than zero.

e Average : It returns the average of the input values.

e Maximum : It returns the maximum value of all the input values.

e Minimum : It returns the minimum value of all the input values.

e Thread i : This function takes all the input values and returns the value of the thread i2.

The thread identifier is selected in the parameters window (8.29) that will be raised when
Thread i function is selected.

2Tasks could have different number of threads, if a selected thread number not exists within a task, a value 0 is
returned for that thread.

54 CHAPTER 8. SEMANTIC MODULE

TASK Parameters

Glaobal window

Thread i Parameters

Thread Id | 1

Ok Default

Figure 8.29: Thread i parameters window

APPL functions

The APPL functions return values which refers to the application level, these values are computed
with all the values from the previous level, in this case this level is the TASK level. As the previous
level, these functions compute a combined value which will be passed to the next level (if window
is working at APPL level, the value is passed to the WORKLOAD level).

Adding
Adding Sign
average
Pl a=Cimum
Rlinni mum

Figure 8.30: Appl level functions
The functions implemented at this level (see figure 8.30) are :

e Adding : It adds all the input values and returns the sum.

Adding Sign : It adds all the input values and returns if the sum is greater than zero.
e Average : It returns the average of the input values.
e Maximum : It returns the maximum value of all the input values.

e Minimum : It returns the minimum value of all the input values.

Add Tasks : It only adds the input values of the selected tasks.

WORKLOAD functions

When working at WORKLOAD level, APPL functions, TASK functions, and THREAD functions are
enabled. The WORKLOAD functions receive the values from all the applications defined in the trace
(APPL level).

In this level, thr workload level receives the values from all the applications, takes all these
values and computes a combined value that will be passed to the next level (COMPOSE levels).

Adding
Adding Sign
Average

Pl aximum

rdinimum

Figure 8.31: Node level functions

The functions implemented in this level (see figure 8.31) are:

8.3. SEMANTIC FUNCTIONS 55

e Adding : It adds all the input values and returns the sum.

Adding Sign : It adds all the input values and returns if the sum is greater than zero.
e Average : It returns the average of the input values.
e Maximum : It returns the maximum value of all the input values.

e Minimum : It returns the minimum value of all the input values.

8.3.3 CPU, NODE and SYSTEM functions

The cPU level returns the value of the thread that is executing on that processor so only one value
is received from bottom level. On the other hand, NODE and SYSTEM levels return a combined
value of all the values returned by the previous level. A node receives the value of all its processors
and the system receives the value from all the nodes.

It is important to note that the lowest level (THREAD level) when a resource object level is
selected only considers the record traces which have been executing on a resource (the processor
identifier of the record has been set), the rest are not considered. Next points will describe the
functions implemented on Resource Object levels.

CPU functions

When working at CPU level, the cPU functions and the THREAD functions are enabled. The cpPU
functions receive the value returned from the previous level, THREAD level.

CPU functions are used to act on the value returned by the thread that is executing and return
it to the next level. If no thread is executing at a time, a zero value (zero value corresponds to
the idle value) is returned.

Semantic Module a
Processor view@MPI_application UTE pryv

COMPOSE FUNCTIONS

COMPOSE 2 A ls =

RESOLRCE MODEL

SYETER fefting

ey Active Tha ﬂ

Active Thd Sign
Active Thd Val J
Active Thd Val Sign

THREAD

Ok | Default |

Figure 8.32: Cpu level functions
The functions implemented by paraver at this level are :

e Active Thd : Returns the value of the active thread as is, without modify it. If there isn’t
any thread executing on the processor, a zero is returned.

e Active Thd Sign : Returns the sign of the value passed by the active thread. If value
passed by the thread is greater than zero, the value 1 is returned. Otherwise, return the idle
state (value 0).

96 CHAPTER 8. SEMANTIC MODULE

e Active Thd Val : If the value passed by the thread level has been selected, returns it as is.
If it hasn’t been selected, a zero value is returned. The function acts as filter, only selected
values will be passed to the next level, the rest will be transformed to zero.

A window is raised to select the values that will be passed to next next levels (see figure

8.33).
CPY Paramelers CPY Paramelers
CPU view@MPI_application.UTE. pr CPU view@MPI_application UTE.pry
Active Thd Val Parameters Active Thd Val Sign Parameters
Values I 1.9 Values I il

Ok I Default | Ok I Default |

Figure 8.33: Active Thd Val and Active Thd Val Sign selection values windows

e Active Thd Val Sign: If the value passed by the thread level has been selected, returns
its sign. If value is greater than zero, the value 1 is returned instead of the value as is. If it
hasn’t been selected, a zero value is returned. The function acts as filter, only the sign of
selected values will be passed to the next level, the rest will be transformed to zero.

A window is raised to select the values that will be passed to next next levels (see figure
8.33).

NODE functions

When working at NODE level, the NODE functions, the CPU functions and the THREAD functions
are enabled.

The NODE functions receive the values from all its processors (CPU level) and computes a
combined value that will be passed to the next level. The NODE level is also enabled when working
at SYSTEM level.

Adding
Adding Sign
Average

Pl aximum

rdinimum

Figure 8.34: Node level functions
The functions implemented in this level (see figure 8.34) are:

e Adding : It adds all the input values and returns the sum.

Adding Sign : It adds all the input values and returns if the sum is greater than zero.
e Average : It returns the average of the input values.
e Maximum : It returns the maximum value of all the input values.

e Minimum : It returns the minimum value of all the input values.

8.3. SEMANTIC FUNCTIONS 57

Adding
Adding Sign
Average

Pl aximum

rdinimum

Figure 8.35: System level functions

SYSTEM functions

When working at SYSTEM level, the SYSTEM functions, the NODE functions, the CPU functions and
the THREAD functions are enabled. The SYSTEM functions receive the values from all the nodes
defined in the trace (NODE level) and computes a combined value that will be passed to the next
level (COMPOSE levels).

The functions implemented in this level (see figure 8.35) are:

e Adding : It adds all the input values and returns the sum.

Adding Sign : It adds all the input values and returns if the sum is greater than zero.
e Average : It returns the average of the input values.
e Maximum : It returns the maximum value of all the input values.

e Minimum : It returns the minimum value of all the input values.

8.3.4 Compose functions

The compose functions are applied at the top level, when all the object levels have been computed.
The two compose levels which are applied from bottom to top. First, it is applied the COM-
POSE 2. The level which receives as input the value computed by the object model functions. the
result is passed to the COMPOSE 1.
The two compose levels have the same functions and can be combined to obtain the final value
that will be returned by the Semantic Module to the Representation Module.

Semantic Module | =
Global window@ht WO000047070. pry

COMPOSE FUNCTIONS

COMPOSE 1 A5 s = |

COMPOSEZ ps s d
Sign
PRC 1-Sign
Mad+1
hod
D

Select Range

EESLEN

Is In Range
THREAD Stacked al - I
In Stacked val
Mesting level
Ok | Default |

Figure 8.36: Compose level functions

The implemented functions are :

58

CHAPTER 8. SEMANTIC MODULE

e As Is : Not change the value returned from the previous level. The value remains intact.

e Sign : This function returns the sign of the value returned from the previous level. This

function return 1 (a running state) if the value is greater than zero and 0 if it is equal.

e 1-Sign : This function is the complementary of the function Sign. It returns 0 (an idle

state) if the value is positive and 1 otherwise.

e Mod+1 : This function returns the module of the value returned from the previous level.

When the user select this function a new window appears to select the divider. By default
the divider is the greatest integer number on the machine which does not change the value.
The value returned by this function will be within the interval [1...divider] because adds to
the result a 1.

e Mod : This function returns the module of the value returned from the previous level.

When the user select this function a new window appears to select the divider. By default
the divider is the greatest integer number on the machine which does not change the value.
The value returned by this function will be within the interval [0...(divider-1)].

Mod Parameters

Global window

COMPOSE 2 Parameters

Di\r‘iderl 9223372036854 775807

O Default

Figure 8.37: Mod window

e Div : This function returns the division of the value returned from the previous level.

When the user select this function a new window appears to select the divider. By default
the divider is 1 which not change the value.

e Select Range : This function returns the value returned from the previous level if it is

in the selected range, if not returns 0. This function only lets to pass the values that are
between the interval, the rest are converted to an idle state (value 0). When the user select
this function a new window appears to select the range, the user has to select the maximum
and minimum value. By default the maximum value is the greatest integer number on the
machine and the minimum is 0.

Is In Range Parameters Select Range Parameters
Global window Global window

COMPOSE 2 Parameters COMPOSE 2 Parameters

Walue Maxl 92233720366547 75607 Yalue Maxl 9223372036654 7 79807
Walue MinI 1] Walue Min I 1]

| Ok I Default | | Ok I Default |

Figure 8.38: Is In Range/Select Range windows

e Is In Range : This function works more or less as Select Range but returns 1 if the value
returned from the previous level if it is in the selected range, if not returns 0. When the
user select this function appears a new window to select the range, the user have to select

8.3. SEMANTIC FUNCTIONS 59

the maximum and minimum value. By default the maximum value is the greatest integer
number on the machine and the minimum is 0.

e Stacked Val : This function works as a stack. Stores the values returning in each moment
the top value. Values greater than 0 are pushed, when the function receives a value equal to
0 pop up the top of the stack and then, the top is returned. Note that the current (top of
the stack) has been returned before the last change. The goal is to remember the previous

states.
Value 0
is received.
Value 11 Value 0 X
is received. is received.

Value 3 .

is received.
A= I=s : ' : ' : :
Ll : D !
| : i :
— 1 | » :
t t |' t

200 400 GO0 S0 1000y

(a) When working with As Is function the value received is returned.

Another O is received,

Value 11 is received, top is popped up (value 3)
is pushed and returned and new top is returned
by the function. (value 1)
Stacked Val i \ E i ' i
: . i :
1 1 I :
Y : —‘ :
|—¢'— i 4 1 :
...." T T

t 7 t t
200 400 E00 SO0 Lixipiy

Value 3 is received so it is pushed on
the top of the stack ans it is returned
by the funcion. i
Value 0 is received by the function,
so the top is popped up (value 11)
and the new top is returned (value 3)

(b) When working with Stacked Val function values are pushed/popped.
Figure 8.39: Stacked Val function behaviour

Supose that values are function identifiers and zero values are the return of the functions.
Using the Stacked Val function we could obtained a displaying where after returning of
function 11, the displaying returns to the function id 3.

It is important to note that too construct the stack of values, Paraver searches back all the
Look Back Percentatge (see section 6.1.3 on 29. Depending on the selected value the process
to construct the stack could be slow. If a 100% is selected, each time that the stack needs to
be reconstructed, the Semantic Module has to construct it from the trace beginning. Select
the desired value that not affects the results.

e In Stacked Val : This function works like Stacked Val function but only the selected value
is considered. When the user select this function a new window appears to select this selected
value.

Values greater than 0 are pushed, when the function receives a value equal to 0 pop up the
top of the stack. Once selected value has been pushed on the stacked it is returned although
other values were pushed after it. When selected value is popped up, a zero is returned.

60 CHAPTER 8. SEMANTIC MODULE

Function works like Stacked Val
but only is returned the selected
value once it has stacked

In Stacked Wal I I | | \

Figure 8.40: In stacked Val function behaviour

For example, if in the function of time showed in Stacked Val example (see figure 8.39)
we select the In Stacked Val (selecting value 3) function instead of Stacked Val we will
obtain figure 8.40. Note that where value 3 is received it is pushed and is returned until its
corresponding zero is received. When the function receives and pushes the value 11, value 3
is still returned.

As Stacked Val function, supose that values are function identifiers and zero values are the
return of the functions. Using the In Stacked Val function we could obtain a displaying that
shows the execution of function id 3. The calls within function id 3 code are not displayed.

e Nesting level : This function Stacked Val function. Values greater than 0 are pushed,
when the function receives a value equal to 0 pop up the top of the stack. The returned
value is the number of stacked values (lenght of the stack) which correspods to the nesting
level of the value that function Stacked Val will return if it was selected.

Value 1is returned but it corresponds to the nesting level

Instead of value 11 the nesting level, value 3, is returned

1 !
Hestikmg lewvel *, !

e T R

: .

' ' 1 [

' ' ' 1

: 4 : : 1

|—f‘—,—:—‘ ! r 1 1

—— f -‘- f f 1 t
200 400 [=1¢1] 00 1000

Instead of value 3 the nesting level, value 2, is returned
Instead of value 3 the nesting level, value 2, is returned

Figure 8.41: Nesting level function behaviour

As previous examples, supose that values are function identifiers and zero values are the
return of the functions. Using the Nesting level function we could obtain a displaying that
shows the execution nesting levels of the function stack calls.

8.4 Derived views

The Semantic Module offers the possibility to combine different trace views in order to obtain new
views that could not be directly derived from trace records. For example, the IPC (Instructions
per Cycle) metrics shown in section 8.1.4 could not be directly obtained from trace file records,
we can combine the executed instructions and processor cycles counters that have been coded in
the trace records to get it.

8.4. DERIVED VIEWS 61

As we showed in section 8.2, the Semantic Module window when working with this type of views

looks different (see figure 8.42). The process and resource model area where semantic functions of
the active levels could be selected changes.

Semartic Module

TLB_miss_ratiog@bt WODDD03G61E prv

COMPOSE FUNCTIONS

COMPOSE 2 As Is = FACTOR value applied

. to the first window values
F: 00,000 &
.y actor ||
WINDOW

FIRST WINDOW -...

TLB_misses = |4
Combine operation Operation
menu ’ M .= Window selector menus
WINDOW Loads S
1. Factor |i1.000 ‘
SECOND WINDOW -~

Ok | Default |

" FACTOR value applied
to the second window values

Figure 8.42: Semantic window format for a derived window.

Since semantic values are graphically represented on displaying windows (next chapter 9 will
describe the displaying windows), combine two semantic hierarchies could be seen as the combi-
nation of two displaying windows (see figure 8.43). Section 10.1 on chapter 10 will describe how
to create a derived window.

TLB misses X 100

isses @ bLAB.CLprv

TLB missratio
Feoraw | conm mecy s vy dcomr 44 4] o] o1 o]]

/divide

—| Loads completed @ btA.8.Cl.prv

3343
Tine |

neonaw_| I com _rece ssond srig 1 caor 44 4] 0] 1]][]

= 17033433
&

REDRAW | i conn iAoy i send i Fisg [co] 4] 4] 2] mi|]]

Loads completed

Figure 8.43: Obtainning a derived metrics from TLB misses and Loads completed

Chapter 9
Displaying Windows

The graphic representations of Paraver are pictured on the displaying windows. The windows
show Gant timing diagrams of value evolution from the different status and events.

Window Name Trace Name Window PopUp Menu
4 \
O AR o
FREAD 1,34 Window Options
" | i |
S _ Il <
| g
M Timi S
Timing 2
:)) i | | Copy scale Cirl+C >
Y Max scale READ 1,1,6 | L ' I —— 3
Warni (L pae (e g
arning EaD 1. i .W en R [R R [(TR PR R
417 ne ! -+~ Time Line

= 127151061
TIME __

i ‘ : Control
REDR&W J7 Comm I Recy i Send J7 Flag |7 Color ﬂlﬂﬂllﬁlll Area

AN
A

Local Orders

Displaying
Hide Control Attributes

Area Redraw the

drawing area
Figure 9.1: A displaying window

The Displaying Window has two areas: the drawing area where Paraver draws the represen-
tation of the objects (CPU, Tagks, ...), and the control area, at the bottom, where the user can
manage that representation.

The Drawing Area has some hidden functions:

e the click utility (see Textual Module in section 10.2 on page 85): when user clicks in this
area using mouse left button, a window is openned to display the trace records around that
point. It shows a textual display of the values displayed in the window.

e select window: when user clicks in this area using mouse middle button, the focus is changed
to the window. This implies that all Paraver windows (filter, semantic, visualizer, ...) are
updated to the values selected for the window.

63

64 CHAPTER 9. DISPLAYING WINDOWS

e popup menu: when user clicks in this area using mouse right button, a popup menu is
displayed. This menu contains a quick access to the most common utilities.

The Control Area has several buttons to manage the drawing area: the time line, the local
orders, the displaying attributes and the redraw button.

9.1 Control Area

9.1.1 Redraw button

Every time that a property of a displaying window is modified (for example, the filtered events) or
the semantic function displayed but also turning on and off the displaying attributes, the drawing
area must be redrawn to show the changes.

The REDRAW button is very useful because it lets the user to refresh the drawing area, taking
into account the displaying attributes which have been modified.

9.1.2 Time Line

4754154

Time
J =]

Figure 9.2: Time Line : Scale bar

The scale-bar shows the current time of the last trace displayed. It runs to the right most side
of the displaying window, if you go forward, and to the left most if you go backward.
The scale-bar can be moved to shift the timing limits of the drawing area.

9.1.3 Local Orders

The Local Orders are used to manage the drawing area of the displaying window. It works like a
tape player, where the trace file is the tape. All the information was sequentially recorded on the
tape. Paraver can read this tape (trace file) and display its information.

Rewing to

begin ™ P!ay Fo:rward to end
o <[»| v u
‘:":_ “Pause
Play back Go to Event/Time

Figure 9.3: Local Orders : Tape recorder buttons

In accordance with the tape player design we use next typical functionalities:

Rewind

To rewind the trace file to the beginning. The beginning of the trace file will be displayed on the
drawing area according to the scale that we are working.

Play Back

To move back (and display) in the trace file (scroll-back). When this button is pressed the drawing
area, begins to scroll back the trace file.

9.1. CONTROL AREA 65

Play Forward

To move forward (and display) in the trace file (scroll-on). The drawing area begins to scroll on
the trace file. The same problem than Play back could appear; to solve it see Scrolling Speed
option in section 6.1.3 on page 28.

Go to Event/Time

To go to a given time or user event.

Go To =1 E3

Mave ta Time Move ta Event
Time Type Yalue

w REl #Abs| o |-x ar<o| P oos g x-

Gao Time Go Type|ﬂ|ﬂ Go Yalue |

Figure 9.4: Go to Time or User Event

Go Time : If the user wants to move to a certain point, Paraver moves the trace file to the
time written in the Time text box. The time specified can be computed :

- Rel : The time is taken like a Relative time to the current time.

- Abs : The time is taken like an Absolute time (It is the default).

Go Type : Move to the user event which "event” is equal to the text box " Type”.
Go Value : Move to the user event which ”value” is equal to the text box ”Value”.

And : Move to the user event which “event” and ”value” are equal to the text box ”Type”
and ”Value” respectively.

”

Or : Move to the user event which "event” or ”value” are equal to the text box ”Type” or

”Value” respectively.

If the user wants to find an user event, Paraver moves the trace file to the first occurrence of
this event. The options let the user look for an event to the end, to the beginning, to the next or
to the previous occurrence. Move to Event options are :

|— Searching forward for the next event occurrence.
+| Searching backward for the last event occurrence.
— Searching forward for the next event occurrence.

+ Searching backward for the next event occurrence to the beginning.

The drawing area is centered in the selected point.

Forward to end

To go to the end of the tracefile. The ending of the tracefile will be displayed on the drawing area
according to the scale we are working with.

66

CHAPTER 9. DISPLAYING WINDOWS

Pause

To stop the tracefile (stop the scrolling).

In some X Servers the difference between the speed of the machine where paraver is exe-
cuting is greater than the speed of the X Server which is processing the scrolling events, as
a result, the X Server can’t process all the scrolling and drawing requests from the applica-
tion; when this happens the buttons loose sensibility and if you press for example the pause
button, the animation doesn’t stop until all the scrolling has been processed. This problem
occurs because the application executes faster than the X Server. To avoid this problem see

the Scrolling Speed option in section 6.1.3 on page 28.

9.1.4 Displaying Attributes

The displaying attributes display a view of trace records. They can be mixed to get the most
expressive displaying window. After each new updating the displaying area must be redrawn, so
the user should press the ”Redraw” button to see the final view.

Color attribute

The Color toggle change the visualizing representation (by default it is enabled). The color is the
default representation where each visualized value has a specific color which can be modified in the
Colors window (see ”Visualizer” in section 10.1). Remember that the Code color scale is limited,
so if there are values that do not match with any color, it should be selected the representation
without color (see below).

If the color toggle is disabled the representation is shown as a function instead of color code
(Figure 9.5).

Y max

Data Bache Misses

nas 21 Tha T

Y min

Y max]
(UL
17 1811171 59

1847737
I | il

REDRAW | o Comm i Recv f Send I Flag{

Time

or

Color attribute
disabled

Figure 9.5: Window without Color: Function display

The representation without color is very useful when the range of values to show is very wide,
or when the user wants to see the behaviour of a value in a time line.

The range of values are computed from the ”Y max” and 7Y min” values (see ”Visualizer” in
section 10.1). If the user does not take care about this, the view could be confused due to low
precision in the drawing. Each displayed object are drawn between this limits, values less than Y
min are painted as Y min, and values greater than Y max are painted as Y max.

Flag attribute

Paraver draws a flag icon each time that a user event appears when the Flag toggle button is
enabled.

9.1. CONTROL AREA 67

User Events

Flags/User Events

Time

I JE|

e e 4] 3] | »)]

Flag attribute

Figure 9.6: User Event Flags

These flags are colored by user event type. The user can decide which gradient color will be
used to paint a user event type. By default, all event are painted using the first gradient color.

Comm attribute

When the communication attribute is enabled, Paraver draws a line each time a complete com-
munication appears. The line is shown when the message is actually received. Its final time will
be the lower time between the logical and physical receive.

Logical communication
lines (yellow lines)

nmunication Lines

106G6EI5
I I

REDRAW | m) A Recy i gend (Flag Fcoor 44| 4| v] w[w0

Communication attribute

Physical communication
lines (red lines)

Figure 9.7: Communication Lines

Both types of communication (logical and physical) are drawn in different colors. By default,
logical communications are painted in yellow and physical in red. These colors can be changed
(see Changing System Colors in section 6.1.3 on page 28).

Send and Recv attribute

Communication can be shown as line or as icons like the user events. Paraver draws an incoming
arrow icon each time that a receive record appears and an outgoing arrow icon each time that a
send record appears.

The logical and physical communications have the same icons, but the are drawn with different
colors like the communication lines.

Remember that logical communication means when the user wants to send/receive, and the
physical means when the message is actually sent/received.

68 CHAPTER 9. DISPLAYING WINDOWS

Logical receive
icon

Communication Icons

Physical receive
icon

Logical send
icon

Physical send 30
icon 1086838

I E=

REDRAMW f Cnmm([': enid ﬂ ﬂ LI 1‘ m ﬂ

Time

Receive and send attributes

Figure 9.8: Send and Receive Icons

9.2 Window PopUp Menu

A click in the drawing area using the mouse right button will raise the window popup menu. This
menu has the most common features used when working with Paraver windows.

Wingow Options

Clane

Zaoom

=| State As is view @ BT.CIASS.A.OMP_4d.prv

THREAD 1,1,1 {7 £ [
o |
"
1
-
|
3

Timing
Copy scale Ctrl+C |8
THREAD 1.1.2 IF ' 5

THREAD 1.1.3 IP e
THREAD 1,1,4 {7

Scale -~ H

Color Type

Save As

Time 1121054

| REDRAW J7 Comm i Recy _I Send |7 Flag | Color ﬁl il LI 1' ﬂl LI

Figure 9.9: Window PopUp Menu

Clone menu option

The Clone menu option creates an identical copy of the window where it has the same scale,
object representation, filtering options, semantic functions selected, The window name is the
source window name plus the ending _cX to distinguish the two windows; where the X is a number
to distinguish the different clones onto the same window.

Zoom menu option

Quick access menu option to the Zoom utility. The Zoom utility is used to magnify a specific
part of the displaying window, go to the section 10.1.4 on page 83 to see a detailed description.

Undo Zoom menu option

Undo the zoom that has been done restoring the scale and window limits from original window.
This button is disabled if last zoom has been undoned or no zooms have been done on that window.
Go to the section 10.1.4 on page 83 for the Zoom utility details.

9.2. WINDOW POPUP MENU 69

Timing menu option

Quick access menu option to the Timing utility. The Timing utility offers the possibility of
measuring a specific part of the displaying window, go to the section 10.1.4 on page 83 to see a
detailed description.

Copy /Paste scale option

The Copy/Paste scale option copies the window limits (begin time and end time) and window
X-scale to another window. Select the Copy scale option (Ctrl+C) in the source popup window
menu and the Paste scale (Ctrl4+V) option in all the target window where scale have to be copied.
The target window will be redrawn with the new limits. The copied limits are saved so the paste
operation could be applied to different windows.

Scale menu option

The Scale menu option is used to change window scale values. The three functions that acts
onto the scale, modify the scale value and redraw the window to display the new scale value.

Window Options

Clone
Zoom
Timing
Copy scale Ctrl+C

Scale P

Rescale to fit
el e “ Fit ¥-Scale

Save As Fit ¥-Scale

Figure 9.10: Scale Menu

e Rescale to fit: Computes the X scale value to fit all window (useful when window width
has been resized). Figure 9.11 shows how after applying the Rescale to fit option the same
displayed section is showed but rescaled to fit all the drawing area.

Rescale to fit

= Rescale to fit example @ BT.CLASS.A.OMP_8.prv -0

8521901 8521850
ne | L .
REDRAW | I Comm i Recv i Send 7 Flag |7 Color o« »[| » | REDRAW | I Comm i Recv i Send 7 Flag I~ Color IR |

| Rescale to fit example @ BT.CLASS.A.OMP_8.prv

m

Figure 9.11: Rescale to fit example

e Fit X-Scale: Computes the X scale value to fit all the trace file in the displaying window.
After the X scale is computed, the window is redrawn showing all the trace file.

e Fit Y-Scale: Computes the Y maximum scale value to fit all displayed values. After the
maximum is computed, the window is redrawn with the new Y maximum value.

Warning message : If on the left bottom corner of the drawing area appears a red excla-
mation sign like showed in figure 9.12 it means that something could be wrong in the
displaying. Click the symbol to see what happens.

In figure 9.12 the warning symbol is advising that Y maximum scale does not fit all the
values and user should recompute it.

70 CHAPTER 9. DISPLAYING WINDOWS

= 18 misses @ bt WO000044768.prv

N N W - e s aE.
IR TR T — NEE IEE D §

B — | Wi [Ep———

THREAD 1. Im I m m meomo|
THREAD 1. i ! N T 1= ImE 1w

THR - 1 m. oce nmm vmm |
NN N I R L R TN N

Paraver Warning

TIME (in %) Maximum Y scale value does not fit all displayed values.
You should recompute ¥ maximum scale.

REDRAW | I Comm _iRd

o]

Figure 9.12: Warning message

Color Type menu option

If we use a color visualization, by default the code colors are used. If values are greater than
available code colors, we usually use a visualization without color where values are viewed as a
time line (see section 9.1.4).

Window Options

Clonge
Zoom
Timing
Copy scale Ctrl+C

Scale -

Color Type
o F Code Color

Save As Gradient Colar

Figure 9.13: Color Type Menu

Paraver offers another type of color visualization, the GRADIENT VISUALIZATION.

When using the gradient visualization, values between Y max,min (see section 10.1.2) are
painted using the gradient colors. Values between the selected scale (from Y-min to Y-max) are
grouped into several groups (one for each gradient color).

Gragient visualization Visualization without color

e 41115261 e 41115261
J | I if

REDRA W | i Comm _(Recy i Send i Flag I” Colar ﬂ i‘ ﬂ ﬂl 2‘ ﬂ |ﬂ| i Comm _{Recy _{Send _{Flag _i Color ﬂ il ﬂ ﬂl ﬂl ﬂ

Figure 9.14: Gradient visualization

Lower values are painted with a lower gradient color, upper values are painted with an upper
gradient color. Figure 9.14 shows a gradient visualization versus a non color visualization. Note
that dark regions correspond to the upper values and light regions are lower values.

The Color Type menu option lets us to change the color scale used. Select the Code color
option to use the code colors and select Gradient color visualization to the gradient visualization.

Save As menu option

The Save As menu option lets to save the window to a file. The file where windows are saved are
known window configuration files (see next section 9.3 for a detailed description on window

9.3. WINDOW CONFIGURATION FILES 71

configurations).
= = Z Window limit
= Save Current Window {= []|| .- options

WINDOW OPTIONS

| Relative Begin Time ‘ =T

I Relative X-scale et
1junifupciactparaverfiracess” oy

I Compute %-scale when |oaded
Dirzctories Files

DESCRIFTION

Description .

r
[—

Reset Save Cancel
’—I —‘—l§< Selection

. - [
Description i
reset button Save button oK Fiter | Cancel

Figure 9.15: Save As menu option

When Save As option is selected ,a window is raised to select some saving options and to offer
the posibility to write a description of the file (see figure 9.15). The WINDOW OPTIONS and the
DESCRIPTION usefulness of the text are described in next section.

To proceed the saving, press the Save button to raise the selection box to select the file where
window will be saved (see figure 9.15).

9.3 Window Configuration Files

Paraver is a flexible tool that lets the user drive into the application analysis. Different type of
application views could be extracted from the tracefile depending of application type and tracing
parameters. Sometimes, create these views could be a tedious process because more than one
parameter selection is involved. The problem is increased when working with derived metric,
different base views are involved to create the derived one.

Paraver offers a way to save the created view to files in order to load it later for the same or
another trace. Files were windows are saved are known as window configuration file. Later, the
same view could be loaded and the created window will display all the same selected parameters
as when it was create. Since window configuration files could be used to load the view into a
different trace file, Paraver offers a way to adjust the view to the new trace duration. Create the
desired trace view is as easier as load a file.

Windows could be saved by selecting the Save windows option in Configuration menu (see
figure 9.16) or the Save As menu popup option. The Load windows option lets to load them.

1

s
|| =] paraver3.0 {a iDé
I Tracefiles Qonﬂguratiunlgptions Help

e | gad Windows

Save Windows

Figure 9.16: Configuration menu

What is a Window Configuration File (.cfg) ?

The window configuration files are used to save the information related to one or more paraver
windows in order to load them the next time. These files ends using the extension .cfg.

72 CHAPTER 9. DISPLAYING WINDOWS

(| In 1P Send function @ bi.W.425056.prv

Reoran,

i Reeu i Send i Flsg i Color

SAVE WINDOWS LOAD WINDOWS

-

[

windows_file.cfg

Figure 9.17: Window files are used to save created windows to a file.

The main goal of window configration files is to obtain created views another
time by only loading a file (without the needed to reconstruct it).

The next sections (9.3.1 and 9.19) will explain how to save and load the displaying windows.

9.3.1 Saving paraver windows

To save windows in a window configuration file when working with Paraver, go to the menu
option Save windows, the figure 9.18) will be raised in order to save them.

Current tracefile

1 I

=! _Save windows

%TRACEFILE: BT.CLASS.A.OMP_8.prv
WINDOWS LIST:

Window limit

{1 —WINDOW OPTIONS——— LI~ options
Selected | Relative Begin T -
X elative Begin Time
windows Y
_funct_nesting_| I Relative X-scale
User_function
In_parallel_function _
Fidas_per_ms - Compute *-scale when loaded o
FPUO_pet_ms .- Description
List of the windows EEB;—S:H””: DESCRIPTICON e
creatgd for the current FLOPs_per_tns View of parallel functions = Al
tracefile TLE_misses_per_ms execution and its nesting level]
Cycles_per_ms
Instructions_per_ms
7]]

E Select All Unselect All Reset | Save Ok |
A A 4 N

Description
reset button

Select/Unselect all

the windows Save button

Figure 9.18: Window to save the paraver windows.
The name of the current tracefile and a list of all the created displayiong windows for that

tracefile are listed. Select the windows by selecting/unselecting their names and click the SAVE
button; it will raise a file selection box to select the file where windows will be saved. The SELECT

9.3. WINDOW CONFIGURATION FILES 73

ALL/UNSELECT ALL buttons can be used to select/unselect all the windows. When all desired
windows have been saved, close the window by cliking the OK button.

Since window configuration files can be used to load them into trace files with different sizes
and durations, some window options could be added to the file in order to make them more general.

WINDOW OPTIONS

Working with window configuration files is very useful because the user could load the predefined
desired trace views. In order to make them more flexible we have added some options that could
be specified at saving time. By enabling them, the configuration files could be used in different
trace files because limits are saved relative to the current trace limits. The options that could be
specified are:

e Relative Begin Time: If it is enabled, the next time that configuration file is loaded the
beginning window time is relative to the new tracefile duration. For example, if the beginning
time of the window was about the 10 % of the trace duration, when it is loaded on a different
trace, its beginning time will also be about the 10 % of the new trace duration.

o Relative X-scale: If it is enabled, the next time that configuration file is loaded the X scale
window is relative to the new tracefile duration. For example, if the window window was
showing about the 30 % of the trace duration, when it is loaded on a different trace, it will
also show about the 30 % of the new trace duration.

e Compute Y-scale when loaded: If it has been enaled, the next time that configuration file is
loaded the maximum Y scale value is computed in order to fill all displayed values. This
option is useful when the range of all displayed values will change (for example, a window
displaying the data cache misses profile easely can change the range of displayed values on
another trace file).

DESCRIPTION

The user can add a description to the file in order the describe the windows contained in that

trace. File description is displayed at loading time (see next section Loading paraver windows
9.3.2).

9.3.2 Loading paraver windows

To load a window configuration file, go to the Load windows menu option, the figure 9.19 will
be raised.

The window lets to browse the directories and window configuration files. On the left top of
Load windows window (see figure 9.19) there is a menu which contains the list of all the loaded
traces, it used to select the tracefile where loaded files will be applied.

User defined directories

Next to the Load windows window, the User directories popup menu contains a list of directories
where there are the window configuration files. The user could specify a set of directories where
he/she has created some window configuration files. The user must to specify them by using the
environment variable PARAVER_CFGS _DIR (see the Environment variables description
on page 109).

The window configurations directory provided with Paraver distribution also is added. The
SELECT DIRECTORY enables the user to browse the directories, by selecting this option, the user
could specify the desired location in CURRENT DIRECTORY label.

The CURRENT DIRECTORY is shown over the file selection list. Window cofiguration files are
shown in bold face (note, that the extension has been removed from the filenames).

74 CHAPTER 9. DISPLAYING WINDOWS

Tracefiles User directories
{ oad windows a []
I = fuserl/unifupciac/paraver/paraver/etc/ofgs
SELECT DIRECTORY
Directories _ | I
ﬂ
File description
Browse buttons Window configuration files

Load button

Figure 9.19: Window to save the paraver windows.

Browsing the files

Only window configuration files (files with extension .cfg) and directories are displayed in the list.
Window configration files are shown in bold face format without the .cfg extension. Directory
names end by using the slash character (” /).

The user could browse the different directories by double clicking the directory name or using
the browse buttons placed in left bottom.

When a window configuration file name is selected, its description is showed in description
text box. Load it by double clicking it or by clicking the Load button.

Derived windows combine different trace views in order to obtain a new one. In fact, derived
windows, combine two or more displaying windows. When they are saved to a window configu-
ration file, all its structure is also saved. When they are loaded all the structure is also created,
so all dependetn windows are created but only the top window is popped up. The rest are closed
until Open button in Visualizer Module (see chapter 10) is pressed to raise them.

Chapter 10

Representation Module

Once the trace file is processed by the Filter and Semantic modules, the computed time dependent
values are passed to the Representation Module. This module is the responsible to give a
graphical visualization and a very detailed qulitative analysis of these values.

Tracefile

Tracefile records

A
‘ Filter Module |

¢ Tracefile records (filtered)

‘ Semantic Module |

Time dependent value (semantic value)
plus event and communication records.

i Representation Module

| v v v L
: Visualizer Textual Analyzer Analyzer
Module Module Module (1D) Module (2D)

Figure 10.1: Paraver Internal Structure

The Representation Module is composed by three modules : the visualizer module, the textual
module and the analyzer module (see figure 10.1)

e The Visualizer Module (section 10.1) will give us a graphical visualization of the trace
file. It is responsible to manage the displaying windows (see chapter 9) and some utilities to
work with, like Zooming or Timing.

e The Textual Module (section 10.2) give us a textual representation of the record traces
around specific points. It displays in text mode what we are seeing in a displaying window.

e The Analyzer Module (section 10.3) lets us to get summarized information. Very de-
tailed qualitative analysis can be done by properly selecting the Filter and Semantic modules
combined settings.

Except the Textual Module, which is accessed by a click into the displaying window, the

different Visualizer and Analyzer Module utilities could be accessed through the Global Controler
window (see figure 10.2).

75

76 CHAPTER 10. REPRESENTATION MODULE

Global Controfler

=

%

5
it

Module Global utility utility
window Orders Analyzer Module

A I N
1+ Visualizer Timing Zooming ,
: :
! 1
! 1

Visualizer Module

Representation Module

Figure 10.2: Representation Module functions at GlobalControler window

10.1 Visualizer Module

The visualizer module allows the user to display the computed values by the Semantic Module in
a displaying window (see chapter 9 for the Displaying windows description).

Each window shows a particular view of the trace file with its time interval, scale, object
representation and even its trace file.

In the Visualizer module could be included other utilities like zooming, timing, ... that let the
user to work with the different trace views.

10.1.1 Visualizer Module window.

When a trace file has been loaded, if the user press the visualizer icon (Figure 10.3) in the Global
Controller window, the Visualizer Module window is raised (see figure 10.4).

|

Figure 10.3: Visualizer icon

The Visualizer window is used to manage and modify the displaying windows. We can select
which type of object will be displayed, which window will be the current one, its parameters, its
time units and the trace file that will display. We can create and destroy windows, clone, copy,. . .;
these operations will be explained in detail.

The Visualizer Module window is composed by five areas plus a group of buttons to manage
the displaying windows. These five areas are:

e First, at the left top corner, the Resource/Process Levels area composed by the Level button
and some toggle buttons is used to select the object type that will be displayed in a displaying
window. The Resource/Process Levels button hides a window that will be raised when
this button is pressed (see below, in section 10.1.3).

o Next to the Resource/Process Levels area, the Window Browser lists the names of all created
displaying windows. To select a displaying window, the user just has to click the name of
that window and it will be considered like the current one.

e Between, the Window Browser and the Time Units area, there is the Values area where there
are some values attached to a displaying window. These values are the window name (that
could be modified), the X scale (number of microseconds by pixel, explained below) and
the Y scale (see section 9.1.4 on page 66). The Values button has a hidden functionality
explained below.

10.1. VISUALIZER MODULE 7

window browser to Window Name
Level button select the current one Values button Fit X Scale

=| “Misualizer Module L E

Working units

o X S(;,ale '
Object Fit Y Scale

i Loaded tracefiles
Representation Y Scale

(the current one is selected)

Figure 10.4: Visualizer window (Visualizer Module)

e The Time Units area lets to select the time units which a displaying window is going to work.

e On the right side of the window, the Trace file area lists the names of all the trace files that
has been loaded, the current one is highlighted. To change it, the user just has to click the
name of the trace file and it will be considered the current one.

At the bottom of the window there are some buttons to manage a displaying window. Section
10.1.2 will describe them.
The Visualizer Module parameters will affect to the displaying windows. Displaying windows:

e have a window name : The Window name text box at Values area sontains the window name
that will appear at the top of the displaying window and in the window browser list. By
default, paraver gives a different name for each window but the name doesn’t identify the
window. It could be possible to have different windows using the same name.

e are working on a object representation level. Seven object levels could be selected:
THREAD, TASK, APPL, WORLOAD, CPU, NODE or SYSTEM. On the left side of the Visualizer
Module window there is the Resource/Process Levels area. This is the visualization object
in accordance to the object model that we are going to work. By default, the THREAD
level is selected. Remember, that the level where window works will affect on the hierarchy
of functions applied at Semantic Module.

e are working in a specific scales:

— X scale : The X Scale is the number of microseconds by pixel. If it is a high number we
will be working with a higher scale; when the scale number is reduced a more detailed
visualization will be displayed. By default, this parameter has its own value and it is
rarely modified by the user. When the user creates the first window, paraver puts a
value to fill all the trace file in the displaying window and the Zooming utility computes
the new value for the zooms.

If the button next to the X scale is pressed, Paraver will change the X scale to a
value that fits all the trace file in the displaying window.

- Y scale : minimum (Y min) and maximum (Y max) of representation limits. If the value
is out of these boundaries then an overflow/underflow occurs and Paraver draws the
maximum/minimum value. The Y scale is very useful when we are working with a no
color visualization (see section 9.1.4 on page 66).

78 CHAPTER 10. REPRESENTATION MODULE

If the button next to the Y scale is pressed, Paraver will change the Y maximum
scale to a value that fits all displayed values.

e with specific time units. Although trace is specified in microseconds precision, the user could
select the desired time units just selecting its toggle button. There are four options : Micro.
(microseconds), Milli.(milliseconds), Second and Hour. When the Textual and Analyzer
modules will work onto the window, they will use the time selected units.

e and are displaying a view of a specific trace file. On the right side of the Visualizer Module
window there is a list with the loaded trace files. User should select the trace file that will
be displayed in the window.

10.1.2 Visualizer Module window buttons

Paraver lets to create, destroy, clone,...a displaying window. These operations could be done
through the managing buttons at the bottom of the Visualizer window. We are going to see how
those operations could be done.

Creating and destroying displaying windows
e CREATE button: Before creating a new window some parameters should be checked. These
parameters will affect to the displaying window.

When all the parameters have been checked you can create the new window just clicking the
Create button. It is possible to generate as many windows as the user wants, just limited by
the memory of the X-server.

Also, new windows could be created using the Zooming wutility and the Clone button (see
below).

The values filled on the text boxes can be cleaned when the Values button bar is pressed.
The defaults could be filled by clicking this button bar again.

e DERIVED button: The Derived button creates a derived window that is a combination of
two other source windows.

To create it, thw two source windows have to be seleceted in the Window browser list (see

figure 10.5)
Selected windows

. / z
=| Visualizer Module / ; a 3 O

Resource/Process Levels | Window Browser V Yalues | Tirne Units Tracefile
~ WORKLOAD ~ SYSTEM | FRU_tasults Mame |?TLELm|sses 4~ Micra CLASS
 BPPL ~ NODE E\MAS < Milli

ops

w TASK « CPU _ H-GBcale |125294.35 ﬂ + Second
THREAD CnmEutatlnnaleensni - . « Hour
¥ minmax |1 a5 ﬂ

£

Apply OpenfC\usel Colors | Delete |Cupyscale| Create |‘Derwed | Clone I Events Ok

Derived button

Figure 10.5: Creating a derived window. Visualizer module.

Select the first window by clicking its name in the Window browser list and just by pressing
the CTRL key, select the second one by se;ecting its name. As shown in figure 10.5, the two
window names have to be selected and just by pressing the Derived button, the new window
will be created.

10.1. VISUALIZER MODULE 79

e CLONE button: When the user wants to make an identical copy of a window, the CLONE
button should be used. To create the new window, select the source window like the current
one and press the CLONE button. This will create an identical window, where it has the same
scale, object representation, filtering options, semantic functions selected, ...; the window
name is the source window name plus the ending cX to distinguish the two windows; where
the X is a number to distinguish the different clones onto the same window.

e DELETE button: To destroy a window, select the window that should be destroyed and press
the DELETE button. The window will be destroyed and it will disappear from the window
browser.

Managing the displaying windows

e APPLY button: Paraver lets us to modify the selected parameters of a created displaying
window. If you want to change any parameter that you had filled, change it and press the
APPLY button, the new selected parameters will be applied to the window and the drawing
area will be rebuilt. Every time that you modify the parameter of a window you must apply
the changes.

e OPEN/CLOSE button: The OPEN/CLOSE button hide and unhide a displaying window.
When a opened displaying window is closed it disappears from the screen but it remains
created, also, its window name remains in the window browser. When you want to un-
hide a closed window, select it like the current one in the window browser and click the
OPEN/CLOSE button; the window will be opened.

e COPY VALUES button: To copy the current displaying window parameters to another created
window, select the source window.

Press the CoPY VALUES button and then, select the target displaying window by clicking
another name in the Window Browser column. It works like the cloning button but when
copying values the target window must be created.

Defined Event TypesValues window. Ewvents button

The Events button raises the Defined events window (see figure 10.6). This window shows a
list of the defined event types and all their defined values for the current tracefile.

Defined Event types list Tracefile

=| Eventswindow . i
Defined Event Typé‘sNaIues (Tracefile: bLWO000047070.prv)

GOt T Ll m Label
il

[

0 42000512 Pracessor cycles { PM_CYC) g 0 End

0 42000609 Float multiply- adds executed (PM_EXEC_FMA) initialize (module initialize f)

0 42000700 TLE misses (PM_TLB_MIZS) 15 exact_rhs (module exact_rhs.Q)
0 60000001 Parallel (OMP) compute_rhs (module rhs.f)
0

0

r

60000002 Warksharing (OMP) %_solve (module x_solve f)
60000013 Parallel Function y_solve (module y_solve.f)
""" z_solve (module z_solve.f)

Lser functions

|5 E—
yoes es roorg
&2 m

Defined Event values list
for the selected type

Figure 10.6: Events window

The event type list shows the gradient color number which the flag will be painted, the event
type number and its associated label. Select a type by clicking, and their defined values will be
displayed.

80 CHAPTER 10. REPRESENTATION MODULE

The user can define the labels for each event type and his defined values using the Paraver

Configuration Files (see Trace Generation document at URL http://www.cepba.upc.es/paraver).

Changing window colors. Colors button

The Colors button raises the Colors window where the user can change the code or gradient colors,
used for Code and Gradient displaying. The user can change the displaying mode and the RGB
values of each color.

Colors a
Code Colors Change Color Gradient/Flag Colors
Il o
— |[l==
0
2 Stopped Grasient 2|
e JE
T Gradent 4 |
T | | - s
® Waiting fr Semaghors copy coors ||
7 Ovethead _
N | - EETEN
12 Busy Wait | Gradient 12 |
13 Collective OF Synch | [Gradient 13 |
14 Callective OP Gomm, | 4 [Gradient 14 |
o J—

Figure 10.7: Color Menu: ”Code” and ”Gradient” colors

Change colors by clicking on the desired one and move the scale bars of the basics (R, G, B).
To recover the color just double click on the desired color. To copy a color click the source color
press the COPY COLORS button and click the target color. The change of colors will affect all the
displaying windows.

The labels of code colors and gradient colors can be modified to get a correct information
about the meaning of each one for the user. Also, the code colors and gradient colors can
be defined in the Paraver Configuration File (see Trace Generation document at URL
http:/ /www.cepba.upc.es/paraver).

10.1.3 Selecting objects that won’t be displayed. Level button

Each displaying window will be associated with a level of visualization. This level fixes the type
of object to work with and what will be displayed.

By default, paraver works with all the objects in a level and all are displayed in a window.
Through the Object Selection windows Paraver offers a way to select the objects that the user
wants to see.

The Level button (figure 10.4) raises a window where the user could select and unselect the
objects that will be displayed in the drawing area according to the trace file and level where the
window is working. This window is called the Objects window (figure 10.8).

Also, these windows have another utility, they lets to change the object names that appears
in the Y axis. By default, paraver has a default name for each object. For example, the thread
objects are named with his number of application, number of task and thread identifier within the
task (THREAD 1.4.1). The user can change these names with his/her own.

10.1. VISUALIZER MODULE 81

7 THREAD 1.11 Mame : | THREAD 1.1.1
Unselected T B
object (.- THREAD 1_2’1_) Mame : | THREAD 1.2.1 " Object/row name
I THREAD 1.3.1 Mame : | THREAD 1.3.1
IT THREAD 1.4.1 Mame : | THREAD 1.4.1
I THREAD 1.5.1
Selected | - ImnEeRlET Mame : | THREAD 1.5.1
object (7 THREAD 161 3 ame - | THREAD 161
I THREAD 1.7.1 Mame : | THREAD 1.7.1
[T THREAD 1.81 Mame : | THREAD 1.8.1

Fill ohjects that will be sel/unsel. . Areato select individual object

by typing them
Select Unselect
ok selectll | unselectan |

Modify Mames Save Names | Load Names |

Figure 10.8: Level button: Objects window

The Objects window (figure 10.8) is composed by a row of objects where we can select if an
object will be displayed or not (toggle buttons) and its associated object/row names (that could
be changed). Also, we can select/unselect individual objects or a range of objects by typing them.
All these functionality will be explained in next points.

Selecting/Unselecting displayed objects

The user can select what objects will be displayed. This selection match with the object list in
the Y axis of the drawing area. By default, paraver displays all the objects in a level. To unselect
the objects that won’t be displayed disable their toggle buttons and click the Apply button on the
Visualizer window to apply the changes.

There are two buttons to help us when selecting all or unselecting all the objects. To select
all the objects, click on the button Select All, and to unselect all the objects, click on the button
UnSelect All.

Also, to make easier the object selection there is a text box where the user can fill the ob-
jects that will be selected, single objects or intervals, and select/unselect them only by clicking
select /unselect button.

e APPL and NODE levels: since APPL and NODE levels are at the top of the hierarchy, we can
select the objects only by typing its number:
— selecting single objects : 23,24,25
— selecting intervals : 23-25,40-43
— both, single and interval selections : 23,24-26,30,31
e TASK level: when working at TASK level we have to select the task by typing its application
and its task number within the application like:
— selecting single objects : 1.3,1.4,1.5
— selecting intervals : 1.3-1.5
— both, single and interval selections : 1.3,1.4-1.7,2.1,2.3-2.6

e NODE level: when working at cPU level we have to select the processor by typing its node
and the processor number within the node like:

— selecting single objects : 1.3,1.4,1.5

82 CHAPTER 10. REPRESENTATION MODULE

— selecting intervals : 1.3-1.5
— both, single and interval selections : 1.3,1.4-1.7,2.1,2.3-2.6
e THREAD level: selecting/unselecting objects by typing them when working at THREAD level
implies to type the application, task and thread identifiers like :
— selecting single objects : 1.1.3,1.2.1,1.3.1

— selecting intervals : 1.1.3-1.2.1
— both, single and interval selections : 1.1.3-1.1.7,2.1.1,2.1.3-2.1.5

"™ Objects that haven't been selected in the
“ visualization.

Objects

ol e

7 CPU1I

Name : | NODE 0 CPU G
N
i Name: | NODE 0 CPU 1

T CPUTA ¢ Name: [NoDE 0 CPUZ
Ty
L_JACPUTA J Name: |NODE 0 CPUF
JTCRUTS ¢ ame [nopE o cru4 L

TSI -
i ACPUTE i jame. | NODE 0 CPUE

FCPUTF wame. [noDE 0 cPUF

ST "
HIELTAER v, |7Noos scrud Row names have been changed

H g
. 2.CPUZ1 Y Name: | NoDE 1 cPud. 4
Fill objects that #il b sel unsel. Only CPU Id 0

ok selectal | unselectal |

Modify Names Save Names | LoaoNames |

4784154

|
REDRAW | 7= comm i Rece tSend Flg = coor 44| 4| »| w[»|]

Figure 10.9: Objects window: Selecting/unselecting objects and changing its name

Modifying the object names

The user can modify the object names for the current trace file. These names will be displayed in
the Y axis of any displaying window and in the analyzer window. To change them, in the Objects
window a text box appears next to each select/unselect object button, which contains the row
name, fill in each of those text box the new names for each object and when once finished press
the button Modify Names in the Objects window (figure 10.9). Then, Paraver apply the changes
to all the displaying windows of the selected trace file and stores internally the new names. The
new windows that will be created for this trace file will have the new names.

e The button Save Names allows the user to save the current names for the trace file. Press this
button to store the names into a file. It will raise a file selection box to select the filename
where those names will be stored. By default, paraver offers a filename which is composed
by the trace file name plus the .row extension. If the names are saved in this configuration
names file offered by Paraver, the next time when the trace file will be loaded the names
configuration file will be loaded at the same time.

e The button Load Names allows the user to load a configuration names file while Paraver is
running. The new names are applied automatically after the load of this file.

Note, that a configuration names file are specific for a trace file, if this file is reused for other
trace files, they must have the same number of objects in each level.

10.1. VISUALIZER MODULE 83

10.1.4 Working with windows
An easy way to measure. Timing utility.

This utility offers the possibility of measuring a specific part of the displaying window. It computes
the elapsed time between two points in the displaying window. Both points, the beginning and
the end, can be selected from any displaying window.

]

Figure 10.10: Timing icon

To measure a specific part on the displaying window (see also figure 10.11):

1. Click onto the Timing icon (figure 10.10) on the Global Controller window. The Timing
window will appear and when the cursor passes over a displaying window it looks like a
vertical line.

Timing
Initial time.
1416110 us
First selected Second selected
. Final time
point point
2411214 us
window Duration
\ X 995104
1 ED O mE 1 En v
I TR IR 11

O TURNEN [VR TV
0OREE ENE | HEE

Duration of the selected
interval, between first and
second point.

T P 4784154
I

|
REDRAW | s comm /s Recy i sens i Flag = coor 44| 4| »| w1 »b 11|

Figure 10.11: Paraver Timing Utility

2. Select the initial and final points in the drawing area of the window. Note that when cursor
is moving, the text boxs on Timing window are changing to the time where the cursor is
located.

3. Timing results will be written in the the Timing window The Initial and Final time text
boxs show the initial and final points. The Duration text box shows the duration of the
selected interval in the units where window is working.

This Timing tool is very important to provide quantitative measures and it is implicitly used
by several utilities like the zooming or even the static analyzer.

Magnifying specific parts. Zooming utility

This utility offers the possibility of magnifying a specific part of the displaying window. It works
like the Timing wutility but the result is a new detailed zoom of the selected area.

Figure 10.12: Zooming icon

To magnify a specific region of a displaying window (see also figure 10.13):

84 CHAPTER 10. REPRESENTATION MODULE

1. Click onto the Zooming icon (figure 10.12) on the Global Controller window. The Timing
window will appear and when the cursor passes over a displaying window it looks like a
vertical line.

First selected Second selected
point point
LU_window

47847154

Ja |
REDRAW I Comr /_f Recy i Send _| Flag F7 Color ﬂl ﬂ ﬁ ﬂl m ll

When selecting the zoom limits
the cursor looks like a vertical bar

Figure 10.13: Zooming utility : Source window

2. Select the initial and final points in the drawing area of the window using the left mouse
button. Note that when cursor is moving, the text boxs on Timing window are changing
to the time where the cursor is located.

3. When the initial and final points have been selected, Paraver creates a new window with the
same characteristics, (except the scale and name) that contains a zoom of the selected area
(figure 10.14).

Initial time

1416110 us

] : Final time
The new window contains the
selected area magnified 2411214 us
~© Dusation

995104 us

LU_window _z1
Iy 3
nil | |
[Ion R | |

1100 T
0 m

2405835
I 1

REDRAW I Comm I Recy i Send i Flag 7 Color ﬂ LI LI ﬂ ﬂl LI

Time

Figure 10.14: Zooming utility : Zoomed window result

A new window entry is added in the Window Browser on the Visualizer Module window. The
name of the new window is like the previous one but adding the ending zX which told us that
this window is a zoom. The X is a number which tell the zoom level number.

10.2. TEXTUAL MODULE. WHAT/WHERE INFORMATION. 85

If the initial and final points are selected using the middle mouse button the current window
is reused to fill the new zoomed view. Thus, there is not created a new one. When a window
has been reused to fill the new zoomed view, the zoom could be undoned by selecting the Undo
zoom window popup menu option (see section 9.2 on page 68).

Work with all the windows at the same. Global Orders.

The buttons in the Global Controller window, which look like tape recorder buttons, make the
same functions as the displaying window buttons. The difference is that all these functionalities
have a global action, all the displaying windows are managed together.

; Global Play Back
Global Rewmc{ Y Global Pause

< 4| »|» 0]

Global Play -
Global Forward

Figure 10.15: Global Controller Buttons

For instance, if you press the global Play, then all the displaying windows will make a play
too. Therefore, you will see all these windows scrolling at the same time.

The Global Orders are used when the user wants to compare the evolution of two displaying
windows at the same time.

10.2 Textual Module. What/where information.

Paraver offers a simple and quick way to get information about the tracefile from the displaying
window. A click in the drawing area using the left button (see chapter 9 on page 63) gets a textual
display of the displayed values around the selected point.

0 0] S
Text - TRACEFILE : lu.pry Window Mame : Global window j
Header || - Ohject : THREAD 1.2.1
Click Titme : 1645749 Time Units : Microsecands (us)
Semantic ¥alue : 1 Duration : 3016
User Event at 1600247 Type is 41 Value is 144
Semantic ¥alue : 1 Duration : 6
User Event at 1600253 Type is 40 Value is 133 8
Semantic ¥alue : 1 Duration : 1 =
Text User Event at 1600254 Type is 40 Value is 138 Ok j‘j
Semantic Yalue : 1 Duration : 3 x
Body “..f ser Event at 1600257 Type is 40 Value is 80 2
Logical RECEIVE at 1533064 from 1,1,1,1 at 1600257 , Duration : 1193 (Transmision = 872), (size : 640, tag :
Semantic ¥alue : ¥ Duration : 50
Semantic ¥alue : 1 Duration : 2
User Event at 1600309 Type is 41 Yalue is 60
Semantic ¥alue : 1 Duration : 16
User Event at 1600325 Type is 41 Yalue is 133
]
I~ P S | —
: : B 5 : —r———— - Control
7 Semantic [T Events [T Communication o < Allthe burst f Text Mode: Repeat| Save as Tex1|
g : : Y : : T '\ Area
? 4 - A A
Text filtering options Click width Text display buttons

Repeat the last click Save as Text
in the current window button

Figure 10.16: Paraver What/Where Information

86 CHAPTER 10. REPRESENTATION MODULE
This textual information is displayed in a window called What/Where window (Figure 10.16)
and is composed:
e by the Text Area, where the textual information is displayed.
e and the Control Area, where the user can select what he/she wants to see.

This window is resizable and has scrolling bars to shift the information. The textual information
displayed in the Text Area is composed by a header and a body which have a predefined format.

10.2.1 Text area
Text header

The text header gives information about where the click has been done. It shows the tracefile
name, the window name, the object where the click has been done and the timing point selected.
Also, the header shows the current window time units.

TRACEFILE : tracefile name Window Name : window name

Object : object

Click time : timing point Time Units : current time units
Text body

The text body shows the trace information around the selected point. There is one line for each
type of textual information : semantic values, events and communications. The information line
format for each type is :

e Semantic value format line is :
Semantic Value : <value> Duration : <burst time>
where the burst time is the duration of the burst with the same semantic value.
e Event format line is :
User Event at <time> Type is <type> Value is <value>
e Communication format line is :

Logical/Physical SEND/RECEIVE at <time> to/from <object> at <time>,
Duration : <communication time> (Transmission = <transmision_time>),
(size : <size>, tag : <tag>)

10.2.2 Control Area

At the bottom of the window there are some buttons to select what the user want to see. These
buttons are divided in two groups : Text Filtering buttons and Text displaying buttons.

, N~ Gl
I Semantic [T Events |7 Communication 77— _| All the burst I Text Mode Repeat| Save as Tex|

Figure 10.17: What/Where Control Area

The Text Filtering buttons are the toggle buttons on the left and they are used to filter
the traces found by the click process. The displayed information is the one that arrives to the
Filtering Module. For example, if the user don’t select any type of communication the user won’t

10.2. TEXTUAL MODULE. WHAT/WHERE INFORMATION. 87

see any communication line. Note that this utility collects the traces around the selected value; if
the user are working in a high scale of visualization, the number of lines raises and the clearness
is lost. Select an adjusted scale to get the desired level.

Their functionality are :

e Semantic : This toggle button is used to display or not to display the semantic value and
its duration. By default, this button is enabled but disabling this button the information
received about the semantic value burst, won’t be painted.

e Events : This toggle button is used to display or not to display the information about the
events. By default, this button is enabled. Disabling the button the event information won’t
be painted.

e Communication : This toggle button is used to display or not to display the information
about the communications occurred around the click point. By default, this button is en-
abled.

The Scale bar lets to fix the width of the click selection in current time units. Paraver mul-
tiplies the 'X-scale’ value (see ”Visualizer” in section 10.1) of the displaying window to the scale
bar number, to compute that width.

The Text displaying buttons are the toggle buttons on the right of the scale bar, they are
used to select how the information will be displayed. Their functionality are :

10.2.3 All the burst

Sometimes, when the user is working in a lower scale (like figure 10.18), the click utility doesn’t
give all the information of the current burst because the width of the click is lower than the burst.
To solve this problem there is the button ” All the burst”. If this button is selected the click search
and display all the information of the burst clicked filtering it if it is necessary in accordance to
the toggle buttons.

Large Burst

22543596
I JE

I~ Comm I Recy _ISend |7 Flag |7 Color ﬂl il LI ﬂl ﬂl LI

Time

Figure 10.18: Window at lower scale

The click information in a window with a lower scale gives more information with all the burst
enabled. In the previous example, the click with all the burst disabled in the processor number
one (figure 10.19) gives a poor information because the scale is tiny and the burst is big. As a
result, the click width is tiny, too. With all the burst enabled (figure 10.20) Paraver searches back
and forward to all the burst, and the result is all the information related for this burst. Note, that
the click utility has searched until the limits of the burst (blue zone).

88 CHAPTER 10. REPRESENTATION MODULE

WhatWhere Information

TRACEFILE : luprv Window Mame : Large Burst &
Ohject : CPU1
Click Time : 2226657 Time Units : Micraseconds (us)

=== 3emantic Value : 1 Duration : 44406

[I

5 |
7 Semantic |7 Events T Communication [| Al the burst] L Text Mode Repeat| Save as Textl

Figure 10.19: What/Where with all the burst disabled

What\Where Information _[Of x|
TRACEFILE : lupry Window Mame : Large Burst =
Ohject : CPU1
Click Time : 2228637 Time Units : Micraseconds (us)

Semantic Walue : 1 Duration : 2

User Event at 2206546 Type iz 41 Value is 108
Semantic Walue : 1 Duration : 1756

User Event at 2208302 Type is 41 Value is 139 ok

=== Semantic ¥alue : 1 Duration : 44406

User Event at 2252708 Type is 40 Yalue is 139

Semantic Value : 1 Duration : 322

User Event at 2253030 Type is 40 Yalue is 33

Logical SEMD at 2253030 105,1,5,1 at 2265451 , Duration : 32421 (Transmision = 32371), (size : 23760, t

=] i

e —
- 5 ‘
7 Semantic |7 Events |7 Communication o w— 7 Al the burst| _f Text Mode Repeatl Save as Te><t|

Figure 10.20: What/Where with all the burst enabled

10.2.4 Text Mode

There are two information modes available that affect to the Semantic Value and User Event
information. The Text Mode can be selected just pressing the button Text Mode at the bottom of
this window.

If the Text Mode toggle is disabled (default mode), the semantic value, the user event type
and user event value are shown as numbers (Figure 10.21).

[o

TRACEFILE : lu.pry Window Mame : Global window

Ohject : THREAD 1.21
Click Time : 1645749 Time Units : Microseconds (us)

Semantic Walue : 1 Duration : 3016

Uszer Event at 1600247 Type is 41 Value is 144
Semantic Walue : 1 Duration : &

User Event at 1600253 Type is 40 “alue is 133
Semantic Walue : 1 Duration : 1

User Event at 1600254 Type is 40 Yalue is 138 Ok
Semantic Walue : 1 Duration : 3

User Event at 16002357 Type ig 40 “alue ig 80

Logical RECEIVE at 1599064 fram 1,1,1,1 at 1600257 , Duration : 1193 {Transmision = §72), (size : 640, tag :
Semantic Walue : 7 Duration : 50

Semantic Yalue : 1 Duration : 2

User Event at 1600309 Typeis 41 “alue is 0

Semantic Yalue : 1 Duration : 16

User Event at 1600325 Type is 41 Value is 138

]

| T P

5
7 Semantic 7 Events T Communication [A Allthe burst L Text Mode Repeat| Save ag Text|

Figure 10.21: Paraver What/Where Information shown as numbers

But if the Text Mode toggle button is enabled these values are shown as labels (if they are
defined). When these values are shown as labels the format line is :

10.2. TEXTUAL MODULE. WHAT/WHERE INFORMATION. 89

- Semantic value format line when we are working with labels is :
<semantic value label> Duration: <burst time>

- Event format line when we are working with labels is :
User Event at <time> <label type> <label value>

The figure 10.22 shows the same click that figure 10.21 but with the Text Mode information
enabled. Numbers are shown as labels.

WhatWhere Information

L_L|

TRACEFILE : lupry Window Mame : Global window

Object : THREAD 1.2.1
Click Time : 1645749 Time Units : Microseconds (us)

Running Duration : 3016

User Event at 1600247 EMD of function jacld (Calculation)
Running Duration : &

User Event at 1600253 BEGIN of function hits (Calculation)
Running Duration : 1

User Event at 1600254 BEGIM of function exchange_1 (Communication) Ok
Running Duration : 3

User Event at 1600257 BEGIN of function MPI_Recy {MPI)

Logical RECEIVE at 1593064 from 1,1,1,1 at 1600257 , Duration : 1183 (Transmision = &7&), (size : 640, tag :
Overhead Duration : 50

Running Duration : 2

User Event at 1600309 EMD of function MPI_Recy (MPI)

Running Duration : 16

User Event at 1600325 EMD of function exchange_1 (Communication)

]

- 5 ‘
7 Semantic [T Events 7 Communication [- Allthe burst |7 Text Mode Repeat| Save as Textl

| T P

Figure 10.22: Paraver What/Where Information shown as labels

Note, that the semantic value has been converted to labels like Running (semantic value 1),
overhead (semantic value 2), the user event type has been converted to labels like Begin of
function (event type 40) and End of function (event type 41). Finally, in our example the user
event values have been converted to function names which had been defined in the configuration
file.

Since the semantic value is a computed value from trace records through object model hierarchy,
not ever could be associated to a corresponding label. There are some trace views where semantic
value is obtained directly from a defined record value:

e the semantic values of the State As Is view could be associated to the defined state labels
because the returned values from the semantic module are directly record state values. For
example:

Running Duration: 3016

e the semantic values of the Last Evt Val view could be associated to the labels of the last
processed event:

— when an event has a defined defined type label (User function) and has a defined value
label (z_solve), the event line will be shown as:

User function x_solve Duration: 3016

— when an event has a defined type label TLB misses but doesn’t have a defined value
label for value the 4273498, the event line will be shown as:

90 CHAPTER 10. REPRESENTATION MODULE

TLB misses 4273498 Duration: 3016

e the semantic values of the Last Evt Type view could be associated to the type label of the
last processed event: For example:

User function Duration: 3016

e the semantic values of the Next Evt Val view could be associated to the labels of the next
event. For example:

— when an event has a defined type label (User function) and a defined value label
(z_solve), the event line will be shown as:

User function x_solve Duration: 3016

— when an event has a defined type label TLB misses and doesn’t have a defined value
label for value 4273498, the event line will be shown as:

TLB misses 4273498 Duration: 3016

e the semantic values of the Next Evt Type view could be associated to the defined event
type label of the next event. For example:

User function Duration: 3016

If there is no label, the text mode will appear as an unknown plus the numerical value:

- Semantic value format line when we are working with labels is :
Unknown for value <value> Duration : <burst time>
- Event format line when we are working with labels is :

User Event at <time> TYPE <type> VALUE <value>

10.2.5 Repeat button

The Repeat button repeats the last click done in the current window. This button is very useful
when we have changed any parameter that will affect the displayed information and we want to
obtain the information on the same point.

10.2.6 Save as Text button

The What/Where window lets the user to save the textual information around the click point in
a plain text. To save it, click onto the button Save as Text on the bottom right corner of the
window and a selection file box will be raised to select the filename where this information will be
saved.

10.3. ANALYZER MODULE 91

Figure 10.23: Analyzer icons: (a) Analyzer icon 1D (left) (b) Analyzer icon 2D (right)

10.3 Analyzer Module

This Analyzer Module let us to analyze a subset or the full trace file. The selected traces are

pre-processed by the Filter Module and Semantic Module modules, before entering in the Analyzer
Module.

Very detailed qualitative analysis can be done by properly selecting the Filter Module, Semantic
Module, and Analyzer Module combined settings.

10.3.1 Analyzer Module 1D

Analyzer window
When the analyzer icon (figure 10.23 (a)) is pressed, the Analyzer window is raised.

Window name where the
analysis has been computed o
; : Analysis limits
Analvsis Results Analyzer functions)
Row‘: names y Save button
; | Y “a ;

T ¥ # Sends
=i Analvzer: Analysis compurted for Global window @ 1.A.8.2 iter.prv - P
RO Ay Serﬁ@ntic Yal | # Sends = # Receives = # Events =
| = Avg Semantic ¥al ——
THREAD 1.1.1 0.4z Bad 636 fverage i 1= 0
THREAD 1.2.1 0.90 953 954
THREAD 1.3.1 0.69 953 954 Int Semantic Yal
THREAD 1.4.1 061 536 636 Num Bytes Sent i Beqin Time :
THREAD 1.5.1 062 536 36) ; 0
THREAD 1.6.1 0.74 554 953 Avg Message Size B Tl =
THREAD 1.7.1 0.77 954 953 average Burst :
THREAD 1.6.1 073 B3 B34 Bl
Stdev Burst E Duration

Total 5.93 5355 G356 # Burst 5799266
Average 0.75 79475 9475 X
Masimurm 0.92 354 954 e Wik B Yl R
hinimurm 0.61 634 634 Max Semantic Val All Window|| All trace
Stoey o 156.75 1579 Min Semantic Val / _I

—_— Analyze | Repeat

H ¥ 1 - _i Calculate Al
=] 15 Graph/Text . Graph/Text I , Graph/Text | Graphi/Text
“All trace
button 4 .
Graph/Text buttons Computes the analysis

for the current window

Repeat the previous
analysis donein the
current window

Figure 10.24: Analyzer window

The Analyzer Module window can show four analysis at the same time, one in each row. At
the top of each row there is a pop up menu to select the function that will be displayed in that
row. This pop up menu contains the default functions and the user defined functions.

On the right side of the window there are the limits and the window name were the analysis
has been done plus some buttons that will be explained below.

The Analyzer results contains the result of the applied function plus some information between
the different rows that take part in the analysis like average, variance, ...

92 CHAPTER 10. REPRESENTATION MODULE

Calculate All option

The analyzer module can compute the results for all the analyzer functions and not only for the
four displayed functions. Then, when we select a new function in a row its analysis has already
been done and the analyzer only has to show the results without compute the analysis another
time (the user doesn’t have to wait for the function results). Enabling the Calculate All button
when the analysis is working it computes the results for all the functions.

Sometimes, when we are working with large traces, to compute all the analyzer functions
will be so slow and usually when we are doing an analysis, we are only interested in a specific
group of functions. With Calculate All button disabled the analysis is computed only for the four
displayed functions. If the Analyzer Module only have to compute the four displayed rows when
we are working with large traces, the analysis will go more quickly. The other functions which
aren’t selected in a row don’t have its results computed and if they are selected in a row after the
analysis, they will appear as Funct. Not Calculated (figure 10.25). To compute them, the same
analysis could be done just pressing the Repeat button (remember enable the Calculate All button
if you want compute the result for all the analyzer functions).

=.] Analzer: Analvsis computed for Global window @ f1.A.8.2_iter.prv i a 1 d

Row Ay Semantic Val | Avg Semantic Val | Time with Sem Val | Average Burst | Ok |
THREAD 1.1.1 = 0.9z Funct. Mot Calculated 4151.51 Save
THREAD 1.2.1 0.30 Funct. Mot Calculated 2724 .26
THREALD 1.3.1 0.69 Funct. Mot Calculated 2076.17 -
THREAD 1.4.1 0.61 Funct. Mot Calculated 2719.78 Biagin Time :
THREALD 1.5.1 062 Funct. Mot Calculated 2766.80]
THREALD 1.6.1 0.74 Funct. Mot Calculated 224016 Sl T X
THREAD 171 077 Funct. Not Calculated 2311 93 net Time :
THREAD 1.6.1 0.73 Funct. Not Calculated 3286.44 ki

Funct. Mot Calculated Duration
Total 5.99 Funct. Mot Calculated 22297.05 5799266
Average 0.75 Funct. Mot Calculated 278713
haximum 0.9z Funct. Mot Calculated 4151.51
inimum 0.61 Funct. Mot Calculated 207617 all windowl — an trace
Stdey 011 B27 .48 _I _I
Analyze I Repeat
o P P GraphiText GraphiText Graphf."“fem | GraphiText I
The function wasn’t been
computed in last analysis. Calc_ulate All
Textual Mode vs Graph Mode disabled

Figure 10.25: Text mode vs. graphical mode

Graph/Text representation. Graph/Text buttons.

Paraver can display the results in text or graph modes. By default, Paraver displays the results
in text mode, but the graph mode give us a bar graph display.

Each row has a Graph/Text button to change the display mode. The Graph display shows the
values as bars. When all the values to display are less than 1, the maximum bar length is taken
as 1 and all the bar lengths for the values are scaled to 1. This feature could be seen in function
Avg Semantic Val on figure 10.25 where the bar lengths are scaled to the maximum value which
it is taken as 1.

If there is a value greater than 1, all the lengths are scaled to this value.

If the number of rows that have taken part in the analysis is greater than the row size, the
rows can be scrolled in the two display modes.

All window button

Compute the analysis for the current window using the selected window limits (begin/end time)
and computing the analysis for all the displayed rows.

10.3. ANALYZER MODULE 93

All trace button

Compute the analysis for all the trace.

Analyze button

Compute the analysis for a selected region. After press the button, when the cursor will go into
the drawing area of a displaying window it looks like a little corner, the region must be selected by
clicking two points in the same or different windows. The Analyze button works like Analyzer
icon.

Repeat button

Sometimes, when an analysis has been done, the user would do the analysis onto the same limits
but changing a specific parameter. The Repeat button makes the analysis with the same limits
that the last analysis. The analysis only could be repeated on a window where an analysis had
been done, and it will be made using the same limits of last time.

If no analysis has been computed in the current window, the Repeat button is disabled.

Saving the analysis in a file. Save button

The save button lets us to save the analysis, which we have been done, in a plain text file. When
this button is pressed it raises a file selection box asking for the file name where it will be saved.

The save option saves the four displayed columns in the analyzer window plus the limits where
the analysis was done. The text file organization is more or less like the window appearance and
look like this :

Begin Time : 0.00 End Time : 4784156.00 Duration : 4784156.00

Row Time with Sem Val Avg Semantic Val # Sends # Receives
CPU 1 3188830.00 0.67 324.00 328.00
CPU 2 3167106.00 0.66 488.00 489.00
CPU 3 3143421.00 0.66 488.00 489.00
CPU 4 2703920.00 0.57 326.00 326.00
CPU 5 2885524.00 0.60 326.00 326.00
CPU 6 2879705.00 0.60 489.00 488.00
CPU 7 2868487.00 0.60 489.00 488.00
CPU 8 2683333.00 0.56 328.00 324.00
Total 23520326 .00 4.92 3258.00 3258.00
Average 2940040.75 0.61 407.25 407.25
Maximum 3188830.00 0.67 489.00 489.00
Minimum 2683333.00 0.56 324.00 324.00
Variance 189803.37 0.04 81.26 81.26

How to make an analysis

Paraver lets to make an analysis for all the trace file or a subset. Before doing the analysis we
should enable or disable the Calculate All button to compute all the analyzer functions or only
the selected in each column.

To make an analysis for all the trace file, first press the Analyzer icon on the Global Con-
troller window if Analyzer window is not raised, and click onto the All trace button, wait a
moment, an the analysis will be written in the analyzer columns. If the Analyzer window is
raised, press the All trace button to compute the analysis .

94 CHAPTER 10. REPRESENTATION MODULE

Cursor when selecting the

First Selected initial object/time.

point

LU_window

N IRR L
| mio mE
MR EN

4764154

“ ool nmia

Time I ‘

REDRAW o Cuﬁim i Recy _i3Send _iFlag 17 Color

When selecing the final
object/time. It looks like
asquare.

Figure 10.26: Cursor when selecting a region to make an analysis

To analyze a subset, press the Analyzer icon (if Analyzer window is not raised, if is raised
you can press the Analyze button); then, when the cursor will go into the drawing area of a
displaying window it looks like a little corner, select a region clicking two points in the same or
different windows. While Paraver is computing the analysis, a window (see figure 10.38) rows are
marked in a computing state and the working window is raised until the analysis finishes. To
cancel the analysis, click on to the Cancel button.

While the analysis is computed rows are undefined.

=.i Analyzer: Analysis computed for-Global window @ ii.A.8.2-.J) i a 1D
Row fivg SemantieVal — Avg Semantic Val | T]'rne..w;}h Sem val — |7 rage Burst | Ok I
THRE&D 1.1.1 = Computing the analysis Camputing the analysis Computing the analysis Computing the analysis Save I
THRE&D 1.2.1 Computing the analysis Camputing the analysis Computing the analysis Computing the analysis
THRE&D 1.5.1 Computing the analysis Camputing the analysis Computing the analysis Computing the analysis -
THRE&D 1.4.1 Computing the analysis Camputing the analysis Computing the analysis Computing the analysis Begin Time
THRE&D 1.5.1 Computing the analysis Camputing the analysis Computing the analysis Computing the analysis 0
THREAD 1.6.1 Computing the analysis Camputing the analysis Computing the analysis Computing the analysis End Time
THREAD 1.7.1 Computing the analysis Computing the analysis Computing the analysis Computing the analysis
THREAD 1.8.1 Computing the analysis Computing the analysis Computing the analysis Computing the analysis 5793268
Computing the analysis Cofmputina th 1 tinathognglysis Computing the analysis Duration :
Total Computing the analysis Coml | Working Bnalysis Computing the analysis 5799266
Average Computing the analysis Cafi Bnalysis Computing the analysis
Maxirum Computing the analysis Cafi e (i AEEs Bnalysis Computing the analysis
Minimum Computing the analysis Cafi . | Bnalysis Computing the analysis all window| Al trace
Stdev Computing the analysis Cafi (R, TR (M Bnalysis Computing the analysis _I _I
E I Calculate All
| GraphiText Kt GraphiText

While the analysis is computed ‘Cancel the analysis

this window is raised.
Figure 10.27: Computing the analysis

The Timing window shows the limits when the user is selecting the two points. Each point
determines an initial/final object (CPU, ptask, task or thread row), and a beginning/ending time.
The second point may be selected on another window, but the analyzer only takes into account the
timing and the object row, the others features like the trace file will be omitted. When the points
has been selected, wait a moment and the analysis will be displayed on the Analyzer window.

10.3. ANALYZER MODULE 95

User analyzer functions

The Analyzer Module has some user functions in the pop up submenus of each row which can be
used to make the analysis of the trace file. By default, the Analyzer Module has implemented
some functions which could be used to do a very qualitative analysis.

Function Avg Semantic Value

This function computes for each selected row the average value along the selected area. Adds
the duration of each burst multiplied by their values and divide the result by the duration of the
selected area. The Mathematical Formula for each row is :

n_bursts
Z (t; * value;)
i=1
Selected Time

Where:

e n_bursts —is the number of bursts within the selected area for each row (if the selection cuts
a burst, only the selected burst time is used to compute the result).

e t; —is the duration of burst i.
e value; — is the value of burst i.

e SelectedTime — duration of the selected interval.

Function Average if != 0

This function computes for each selected row the average value different of 0 along the selected
area. Adds the duration of each burst multiplied by their values and divide the result by the time
of the selected area with a value greater than 0. It is different from the previous function because
the time with value 0 is not considered in the result. The Mathematical Formula for each row is :

n_bursts

Z (t; x value;)
i=1

where wvalue; > 0
n_bursts

Where:

o n_bursts — is the number of bursts within the selected area for each row greater than 0 (if
the selection cuts a burst, only the selected burst time is used to compute the result).

e t; —is the duration of burst i.

e value; — is the value of burst i.

Function Int Semantic Val

This function computes for each selected row the integral of the values in the selected area.

It adds the duration of each burst multiplied by their values. It is different from the Avg
Semantic Val because the adding is not divided by the duration. The Mathematical Formula for
each row is :

n_bursts

Z (t; x value;)

i=1

Where:

96 CHAPTER 10. REPRESENTATION MODULE

e n_bursts — is the number of bursts within the selected area for each row greater than 0 (if
the selection cuts a burst, only the selected burst time is used to compute the result).

e t; — is the duration of burst i.

e value; — is the value of burst i.

Function Average Burst

This function computes for each selected row the average duration time for all the selected bursts
with a value greater than 0. Adds the duration of each complete burst and divide the result by
the number of selected bursts. The Mathematical Formula for each row is :

n_bursts

> ()

i=1

—— where wvalue; >0
n_bursts

Where:

e n_bursts —is the number of complete bursts within the selected area for each row (incomplete
burst aren’t used to compute the result).

e t; —is the duration of burst i.

e value; is the value of burst i.

Average Burst Parameters

Global window

Parameters

Min Length (M\crﬂ)l 0
Max Length (Micro.) | 9223372036554775607

Figure 10.28: Average Burst Parameters window

By default, all selected bursts will be used to compute the average value, but the user can
select the maximum and minimum duration of the burst that will be considered. This feature is
useful to filter outliers.

To select it, when the user selects this function, a window (called Average Burst Parameters)
is raised, where the user can put the minimum and the maximum duration times.

Function # Burst

This function computes number of bursts in the selected area for each row with a value greater
than zero. If the selected region cuts a burst with a value greater than zero, that burst will not
be added to the result.

As the previous function, by default all the bursts will be used but, the user can select the
minimum and the maximum length that will be considered.

10.3. ANALYZER MODULE 97

Burst Parameters

Global window

Parameters

Min Length (M\crﬂ)l 0
Max Length (Micro.) | 9223372036554775607

Figure 10.29: # Burst Parameters window

Function Stdev Burst

This function computes for each selected row the standard desviation of the duration time for all
the selected bursts with a value greater than 0. The Mathematical Formula for each row is :

_bursts _bursts 2
\/2 (2 _ [Z?_l (t:)

h lue; >0
n_bursts n_bursts] whgge vaue; >
Where:

e n_bursts —is the number of complete bursts within the selected area for each row (incomplete
burst aren’t used to compute the result).

e t; —is the duration of burst i.

e value; is the value of burst i.

As the previous functions, by default all selected bursts will be used to compute the aver-
age value. The user can select the maximum and minimum duration of the burst that will be
considered.

To select it, when the user selects this function, a window (called Stdev Burst Parameters) is
raised, where the user can put the minimum and the maximum duration times.

Stdev Burst Parameters

Global window

Parameters

Min Length (M\crﬂ)l 0
Max Length (Micro.) | 9223372036554775607

Figure 10.30: Stdev Burst Parameters window

Function Time with Sem Val

This function computes for each selected row the standard desviation of the duration time for all
the selected bursts. The Mathematical Formula for each row is :

n_bursts

Z (t:)

Where:

98 CHAPTER 10. REPRESENTATION MODULE

e n_bursts —is the number of bursts within the selected area for each row (if the selection cuts
a burst, only the selected burst time is used to compute the result).

e t; — is the duration of burst i.
e value; is the value of burst i.

As the previous functions, by default all selected bursts will be used to compute the aver-
age value. The user can select the maximum and minimum duration of the burst that will be

considered.
To select it, when the user selects this function, a window (called Stdev Burst Parameters) is

raised, where the user can put the minimum and the maximum duration times.

Time with 3em Val Parameters

Global window

Parameters

Lowser Valuel 1]

Upper ¥alue I 9223372036E5477 5607

Min Length (M\cro)l]
Max Length (Micro.) | 9223372036854775807

Figure 10.31: Time with Sem Val Parameters window

Function Avg Message Size

This function computes for each selected row the average message size along the selected area.
Adds the message size of each sended message and divide the result by the duration of the selected
area. The Mathematical Formula for each row is :

n-messages

Z (size;)

i=1
n_messages

Where:

e n_messages — is the number of messages in the selected area. Only logical sends are consid-
ered to compute the result.

e size; — is the size for message i.

Function Num Bytes Sent

This function computes for each selected row the number of send bytes in the selected area. Adds
the message size of each sent message. The Mathematical Formula for each row is :

n-messages

Z (size;)

i=1
Where:

e n_messages — is the number of messages in the selected area. Only logical sends are consid-
ered to compute the result.

o size; — is the size for message i.

10.3. ANALYZER MODULE 99

Function # Sends

This function computes the number of outgoing communications within the selected area. If
logical and physical communications aren’t filtered, the computed value will be the addition of
logical sends and physical sends.

Function # Receives

This function computes the number of incoming communications within the selected area. If
logical and physical communications aren’t filtered, the computed value will be the addition of
logical receives and physical receives.

Function # Events

This function computes the number of events in the selected area.

Function Max Semantic Val

This function computes the maximum value within the selected area.

Function Min Semantic Val

This function computes the minimum value within the selected area.

10.3.2 Analyzer Module 2D

The Analyzer Module 2D allows to merge the semantic function of two windows or to analyze the
communications for each source-target pair. It includes features such as being able to measure
times, averages, number of bytes, ...

D

Figure 10.32: Analyzer 2D icon

Analyzer window

When the analyzer 2D icon (figure 10.33) is pressed, the Analyzer window is raised.
Three menus (Accumulator, Statistics and Data menus) select the type of information that
will be computed and displayed in the Matrix of results where by default:

e the matrix rows shows the different paraver objects (thread, task, ...) that has taken part
in the analysis. In figure 10.33, rows are displaying threads.

e the matrix columns shows the selected accumulator type of information. For example, in
figure 10.33, the columns show the semantic values where analysis results have been accu-
mulated.

The analysis compute the quantitative information for the Accumulator type of information
using the Statistics function and taking the data from selected Data window.

Total, average, maximum, minimum and stddev statistics per column are showed bellow the
matrix of results.

On the right top corner, there are the next options:

100 CHAPTER 10. REPRESENTATION MODULE
Accumulate by o Window name where the
Source data - Computed statistics analysis has been computed
= Anaﬁazgr Hisi‘ogm.‘ Analysis compuied for Paralfel functions @ bi. WO000037786.prv] D
Objects -
Accumulator values
Matrix of
results
Totals
..... - Hide limits
_ Repeat | SavessTed| _ aitace | alwindow | anayee | ok | =)

Accumulator limits Gradient limits

Figure 10.33: Analyzer 2D window

Horiz./Vert.: Interchanges rows and columns. When it is unselected, paraver objects are
showed on columns and accumulator selected information is showed on rows. By default,
horizontal is selected.

Color enabled: Fill each cell using a gradient color. Values between selected Gradient
limits are grouped into different groups and one different gradinet color is used for each
group of values. Thus, cells with greater values are filled with dark colors and cells with
lower values are filled with light colors. By default, color mode is selected.

Calculate All: The analyzer module can compute the results for all the analyzer functions
and not only for the four displayed functions. Then, when we select a new function in a row
its analysis has already been done and the analyzer only has to show the results without
compute the analysis another time (the user doesn’t have to wait for the function results).
Enabling the Calculate All button when the analysis is working it computes the results for all
the functions.

Sometimes, when we are working with large traces, to compute all the analyzer functions
will be so slow and usually when we are doing an analysis, we are only interested in a
specific group of functions. With Calculate All button disabled the analysis is computed only
for the four displayed functions. If the Analyzer Module only have to compute the four
displayed rows when we are working with large traces, the analysis will go more quickly.
The other functions which aren’t selected in a row don’t have its results computed and if
they are selected in a row after the analysis, they will appear as Funct. Not Calculated (figure
10.25). To compute them, the same analysis could be done just pressing the Repeat button
(remember enable the Calculate All button if you want compute the result for all the analyzer
functions).

10.3. ANALYZER MODULE 101

Accumulator, Statistics and Data menus

The Accumulator, Statistics and Data menus select the type of information that will be com-
puted by the 2D analysis.
The Accumulator menu select the type of information where statistics will be computed:

e Semantic Value: The semantic values displayed in the analyzed window will be considered.
Thus, we will obtain an object x semantic value table.

e Object level where window is working. Thus, we will obtain an object x object table.

The Accumulator limits select the minimum and maximum accumulator values that will be
considered on the analysis. Also it is possible to group the accumulator values by specifying a
delta value.

The Statistics function is the type of quantitative information that will be computed for each
pair of row-column (object and each accumulator value). Depending on the accumulator type of
information, the Statistics menu contains a different set of functions:

| Accumulator | Available statistics |
Thread #Sends
Task #Receives
Bytes sent

Bytes received
Average bytes sent
Average bytes received

Semantic Value | Time

%Time

#Bursts

Integral value
Average value
Maximum
Minimum

Average Burst Time
Stddev Burst Time

Table 10.1: Statistics functions

The Data menu is used to select the source window where data is taken. Depending on the
quantitative analysis that we want to compute, we can select a different current window as source
data window.

Object x Object available statistics

The available statistics when selecting the Accumulator object type are showed in table 10.1. Next
figure 10.34 shows the results of an object x object analysis where Bytes sent statistics function
has been selected. Window shows the number of bytes sent by each pair-to-pair of processes.

e Function # SENDS: This function computes the number of outgoing communications within
the selected area. If logical and physical communications aren’t filtered, the computed value
will be the addition of logical sends and physical sends.

102 CHAPTER 10. REPRESENTATION MODULE

= Analyeer Histagram: Analysis compuied for win_1 @ btA.941454 prv

Figure 10.34: Object x Object analysis

e Function # RECEIVES: This function computes the number of incoming communications
within the selected area. If logical and physical communications aren’t filtered, the com-
puted value will be the addition of logical receives and physical receives.

e Function BYTES SENT:

This function computes for each selected row the number of send bytes in the selected area.
Adds the message size of each sent message. The Mathematical Formula for each row is :

n-messages

Z (size;)

i=1
Where:

— n_messages — is the number of messages in the selected area. Only logical sends are
considered to compute the result.

— size; — is the size for message i.

e Function BYTES RECEIVED:

This function computes for each selected row the number of received bytes in the selected
area. Adds the message size of each received message. The Mathematical Formula for each

row is :
n-_messages
E (size;)
=1
Where:

— n_messages — is the number of messages in the selected area. Only logical receives are
considered to compute the result.

— size; — is the size for message i.

e Function AVERAGE BYTES SEND: This function computes for each selected row the average
number of bytes send along the selected area. Adds the sent bytes by of each sended message
and divide the result by the duration of the selected area. The Mathematical Formula for
each row is :

10.3. ANALYZER MODULE 103

n-messages

Z (size;)

i=1

n-messages

Where:

— n_messages — is the number of messages in the selected area. Only logical sends are
considered to compute the result.

— size; — is the size for message i.

e Function AVERAGE BYTES RECEIVED: This function computes for each selected row the
average number of bytes received along the selected area. Adds the received bytes by of each
received message and divide the result by the duration of the selected area. The Mathematical
Formula for each row is :

n-messages

Z (size;)

i=1

n-messages

Where:
— n_messages — is the number of messages in the selected area. Only logical receives are
considered to compute the result.

— size; — is the size for message i.

Object x Semantic Value available statistics

The available statistics when selecting the Accumulator semantic value type are showed in table
10.1. Next figure 10.35 shows the results of an object x semantic value analysis where Average
Burst Time statistics function has been selected. Each value represent the execution of a function
so window is showing the average duration of each function per thread in the selected region.

— Analycer Hi - Analysis For Paraliel.

Figure 10.35: Object x Semantic Value analysis

e Function TIME: This function computes the time in each value on the selected area.

e Function % TIME This function computes the percentatge of time in each value on the
selected area.

104

CHAPTER 10. REPRESENTATION MODULE

e Function # BURSTS

This function computes number of bursts of a value in the selected area If the selected region
cuts a burst, that burst will not be added to the result.
Function INTEGRAL VALUE

This function computes for each value the integral time in the selected area. It adds the
duration of each burst multiplied by their values. It is different from the Average Value
because the adding is not divided by the duration. The Mathematical Formula for each row
is :

n_bursts

Z (t; * value;)

i=1
Where:

— n_bursts — is the number of bursts within the selected area for each row greater than
0 (if the selection cuts a burst, only the selected burst time is used to compute the
result).

— t; — is the duration of burst i.

— wvalue; — is the value of burst i.

Function AVERAGE VALUE

This function computes for each selected row the average value along the selected area. Adds
the duration of each burst multiplied by their values and divide the result by the duration
of the selected area. The Mathematical Formula for each row is :

n_bursts
E (t; x value;)
i=1

Selected Time

Where:
— n_bursts — is the number of bursts within the selected area for each row (if the selection
cuts a burst, only the selected burst time is used to compute the result).
— t; — is the duration of burst i.
— value; — is the value of burst i.
— SelectedTime — duration of the selected interval.

Function MAXIMUM

This function computes the maximum value within the selected area.

Function MINIMUM

This function computes the minimum value within the selected area.

Function AVERAGE BURST TIME

This function computes for each selected row the average duration time for all the bursts.
Adds the duration of each complete burst and divide the result by the number of selected
bursts. The Mathematical Formula for each row is :

n_bursts

> ()

i=1

—— where wvalue; >0
n_bursts

Where:

10.3. ANALYZER MODULE 105

— n_bursts — is the number of complete bursts within the selected area for each row
(incomplete burst aren’t used to compute the result).

— t; — is the duration of burst i.

— wvalue; is the value of burst i.

e Function STDEV BURST TIME

This function computes for each selected row the standard desviation of the duration time
for all the bursts. The Mathematical Formula for each row is :

\/Zn bursts _ [Z?:_Iiursts (t'

2
i)
where value; >0
n_ bursts n_bursts] ’

Where:

— n_bursts — is the number of complete bursts within the selected area for each row
(incomplete burst aren’t used to compute the result).

— t; — is the duration of burst i.

— wvalue; is the value of burst i.

All window button

Compute the analysis for the current window using the selected window limits (begin/end time)
and computing the analysis for all the displayed rows.

All trace button

Compute the analysis for all the trace.

Analyze button

Compute the analysis for a selected region. After press the button, when the cursor will go into
the drawing area of a displaying window it looks like a little corner, the region must be selected by
clicking two points in the same or different windows. The Analyze button works like Analyzer
2D icon.

Repeat button

Sometimes, when an analysis has been done, the user would do the analysis onto the same limits
but changing a specific parameter. The Repeat button makes the analysis with the same limits
that the last analysis. The analysis only could be repeated on a window where an analysis had
been done, and it will be made using the same limits of last time.

If no analysis has been computed in the current window, the Repeat button is disabled.

Saving the analysis in a file. Save As text button

The save button lets us to save the analysis, which we have been done, in a plain text file in
Matrix or Row format. When this button is pressed it raises a window to select the plain text
format. Once is selected, a file selection box is raised.

Matrix Format The text file organization is more or less like the window appearance. It looks
like:

106

Row Column
THREAD 1.
THREAD
THREAD
THREAD
THREAD
THREAD
THREAD
THREAD
THREAD
THREAD
THREAD
THREAD
THREAD
THREAD
THREAD
THREAD
THREAD
THREAD
THREAD
THREAD
THREAD

e e e i
PR R R R R R R R R RRRRERRRRR R
W WWWWWWNMNNNMNNMMNMNNNERE PR PR R P

CHAPTER 10. REPRESENTATION MODULE

=| Saveds..

Select Save As Format

« Matrix Format

~ Bow Farmat

Figure 10.36: Save As Format selection format

Begin Time : 0.00 End Time : 5091389.00 Duration : 5091389.00
Objects/Intervals 22 23 24 25 26 27 28
THREAD 1.1.1 333.75 458.59 398.37 6164.21 6291.35 7064.83 390.32
THREAD 1.1.2 340.98 492.48 413.95 6198.00 6201.06 7245.71 392.86
THREAD 1.1.3 343.48 498.05 412.29 6205.40 6153.44 7105.86 395.43
THREAD 1.1.4 244 .42 506.43 455.46 4108.66 4090.92 4821.41 280.68
Total 93.06 1262.63 1955.55 1680.07 22676.27 22736.77 26237.81 1459.29
Average 23.26 315.66 488.89 420.02 5669.07 5684.19 6559.45 364.82
Maximum 24.60 343.48 b506.43 4b55.46 6205.40 6291.35 7245.71 395.43
Minimum 21.94 244 .42 458.59 398.37 4108.66 4090.92 4821.41 280.68
Stdev 0.96 41.28 18.18 21.34 901.04 921.21 1005.70 48.62
Row Format The Row Format text file organization look like:
Begin Time : 678851.87 End Time : 4751963.07 Duration : 4073111.20

Value
22
23
24
25
26
27
28
22
23
24
25
26
27
28
22
23
24
25
26
27
28

54124.00
74205.00
64856.00
1003621.13
1030621.00
1146174.07
63149.00
55304.00
80285.00
66829.00
1008870.13
1010874.00
1175880.07
63598.00
55729.00
80303.00
66450.00
1010074.13
1000502.00
1152158.07
63923.00

10.3. ANALYZER MODULE 107

THREAD 1.1.4 22 39569.00
THREAD 1.1.4 23 82428.00
THREAD 1.1.4 24 73786.00
THREAD 1.1.4 25 668224.13
THREAD 1.1.4 26 666074.00
THREAD 1.1.4 27 782763.07
THREAD 1.1.4 28 45438.00

Total 22 204726.00
Total 23 317221.00
Total 24 271921.00
Total 25 3690789.53
Total 26 3708071.00
Total 27 4256975.27
Total 28 236108.00
Average 22 51181.50
Average 23 79305.25
Average 24 67980.25
Average 25 922697.38

How to make an analysis

Paraver lets to make an analysis for all the trace file or a subset. Before doing the analysis we
should enable or disable the Calculate All button to compute all the analyzer functions or only
the selected in each column.

To make an analysis for all the trace file, first press the Analyzer 2D icon on the Global
Controller window if Analyzer window is not raised. Select the type of information that have
tobe computed and click onto the All trace button, wait a moment, an the analysis will be showed.
If the Analyzer window is raised, press the All trace button to compute the analysis .

Cursor when selecting the

First Selected initial object/time.

point

LU_window
.
HI (I HE ‘ ,
:
(TR TR [| WA 1

CTNE T TR TE TR TR | TR [
TS T T T T O T Y T T TR T

- 4 4784154
J

: i
REDRAW = Cumm I Recy _{3end _IFlag I7 Color ﬁl il LI 1' ﬂl LI

When selecing the final
object/time. It looks like
asquare.

Figure 10.37: Cursor when selecting a region to make an analysis

To analyze a subset, press the Analyzer icon (if Analyzer window is not raised, if is raised
you can press the Analyze button); then, when the cursor will go into the drawing area of a
displaying window it looks like a little corner, select a region clicking two points in the same or

108 CHAPTER 10. REPRESENTATION MODULE

different windows. While Paraver is computing the analysis, a window (see figure 10.38) rows are
marked in a computing state and the working window is raised until the analysis finishes. To
cancel the analysis, click on to the Cancel button.

|=| Analyzer Histogram: Analysis computed for Parallel functions @ BLADOO004360.prv

Percentatge
computed

While the analysis is computed Cancel the analysis

this window is raised.
Figure 10.38: Computing the analysis

The Timing window shows the limits when the user is selecting the two points. Each point
determines an initial/final object (CPU, ptask, task or thread row), and a beginning/ending time.
The second point may be selected on another window, but the analyzer only takes into account the
timing and the object row, the others features like the trace file will be omitted. When the points
has been selected, wait a moment and the analysis will be displayed on the Analyzer window.

Appendix A

Environment Variables

PARAVER_HOME

The environment variable PARAVER_HOME must contain to the Paraver installation directory. For
example, Paraver searched the license file as $PARAVER_HOME/etc/license.dat

setenv PARAVER_HOME /user/userl/traces

PARAVER_CFGS_DIR

Variable used to specify a list of window configuration files directories. The specified directories
will be added to the Load Windows User directories popup menu described in chapter 9.3 on
page 71. Directories must be and separated by a colon and must be specified using the full path
name. For example, if we set the environment variable to:

setenv PARAVER_CFGS_DIR /user/userl/ompitrace_cfgs:/user/userl/ute_cfgs
we are specifying the directories /user/userl/ompitrace_cfgs and /user/userl/ute_cfgs that
will be added to the User directories menu.
PARAVER DIR

Variable used to specify a directory that contain the Paraver trace files. The contents of the
environment variable will be used to set the initial directory of Load Tracefiles menu option in
Paraver Main Menu window.

setenv PARAVER_DIR /user/userl/traces

PARAVER _CONFIG_FILE
Variable used to specify a default Paraver Configuration File for all tracefiles that will loaded.
setenv PARAVER_CONFIG_FILE /user/userl/traces/default_file.pcf

When this environment variable is set up, the specified configuration will be added to each
trace that will be loaded. To get more information about the Paraver Configuration File see
the Trace Generation manual at URL: http://www.cepba.upc.es/paraver.

TMPDIR

Variable used to specify the directory where Paraver temporal files will be placed. By default,
temporal files are placed in the current directory.

setenv TMPDIR /tmp

109

Appendix B

Binary Trace Format

Paraver accepts two trace format types: ASCII and BINARY. The AScCII trace format is described
in Paraver Tracefile Description document (see http://www.cepba.upc.es/paraver). The
binary format is an internal Paraver trace format to speed up the trace loading. A tracefile
using the binary format only can be obtained using the a provided tool (it can be found in Paraver
distribution) from an ASCII trace file. The BINARY trace file names usually end using the extension
.map.

The loading of the AsciI format can be slow for trace files of several hundreds of MB. Loading
trace files in binary format is much faster. Paraver offers an utility, prv2map, to convert ASCII
trace files into BINARY trace files.

prv2map description

Usage: prv2map [-xEvt [all|<evt_list>]] [-xComm [all|<comm_list>]]
<prv_trace> -o <output_map_trace_name>

Description: Converts an ASCII Paraver trace to the binary format.

Options:
-h Get this help.
-xEvt [all | typel,type2,...] Exclude events.
-xComm [all | tagl,tag2,...] Exclude communications.
-sT starting time of PARAVER trace file ’.map’
by default, time (T in us.) is zero.
-eT ending time of PARAVER trace file ’.map’

by default, time (T in us.) is the total time.

prv2map converts ASCII into binary records, and it generates a new mapping. This new
mapping lets Paraver to map the trace file into memory, therefore the loading process is very
quickly. The mapped trace file is also better managed by the memory system, so Paraver can
display very big trace files.

prv2map also act as a filter. It lets to filter events or communications in order to reduce the
output binary trace files. A list of event types that will be excluded in the final binary trace files
could be specified. Also, a communication list could also be specified.

The binary trace file could not be portable between different platforms because the
binary representation may be different in each machine.

111

